Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225320732> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4225320732 endingPage "124167" @default.
- W4225320732 startingPage "124167" @default.
- W4225320732 abstract "Carbon trading is an important market mechanism to promote carbon emission reduction and clean development. Accurate carbon price prediction is significant for environmental policymaking and improvement of carbon market efficiency. However, the existence of end effect and chaotic characteristics of carbon price sequence have limited the improvement of carbon price prediction accuracy. In this paper, a novel carbon price prediction model is proposed, which is based on local characteristic-scale decomposition (LCD), phase space reconstruction (PSR) and least square support vector machine (LSSVM) optimized by artificial fish swarm algorithm (AFSA). Firstly, carbon price is decomposed into several intrinsic scale components (ISC) by LCD to capture carbon price characteristics. Secondly, the maximum Lyapunov exponent is used to detect the chaos of the intrinsic scale components, and the chaotic ISC is further reconstructed by phase space reconstruction (PSR). In the meantime, the influence variables of non-chaotic ISCs are selected through partial autocorrelation analysis. Finally, the LSSVM optimized by AFSA is established to predict the ISC components of carbon price series and the ISC components are combined into carbon price prediction results. The empirical analysis shows that LCD-PSR-AFSA-LSSVM model has better prediction accuracy than Comparison models, and the MAPE values of the three carbon markets are 1.23%, 1.49% and 3.27%, respectively. The results suggest that the LCD-PSR-AFSA-LSSVM model is validity, generalization and stability. The application of the model will improve the operation efficiency of carbon market trading and advance clean development of various industries." @default.
- W4225320732 created "2022-05-05" @default.
- W4225320732 creator A5075522947 @default.
- W4225320732 creator A5079086854 @default.
- W4225320732 date "2022-08-01" @default.
- W4225320732 modified "2023-10-05" @default.
- W4225320732 title "A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction" @default.
- W4225320732 cites W2063792958 @default.
- W4225320732 cites W2091391445 @default.
- W4225320732 cites W2108591703 @default.
- W4225320732 cites W2198869818 @default.
- W4225320732 cites W2413384677 @default.
- W4225320732 cites W2540357196 @default.
- W4225320732 cites W2601772082 @default.
- W4225320732 cites W2800571504 @default.
- W4225320732 cites W2805587443 @default.
- W4225320732 cites W2890866454 @default.
- W4225320732 cites W2892340710 @default.
- W4225320732 cites W2897084336 @default.
- W4225320732 cites W2902890055 @default.
- W4225320732 cites W2908061993 @default.
- W4225320732 cites W2910874004 @default.
- W4225320732 cites W2943952409 @default.
- W4225320732 cites W2955270041 @default.
- W4225320732 cites W2955297542 @default.
- W4225320732 cites W2975025053 @default.
- W4225320732 cites W2979028505 @default.
- W4225320732 cites W2981224608 @default.
- W4225320732 cites W2983365217 @default.
- W4225320732 cites W2990569776 @default.
- W4225320732 cites W2992462999 @default.
- W4225320732 cites W3095603781 @default.
- W4225320732 cites W3122209442 @default.
- W4225320732 doi "https://doi.org/10.1016/j.energy.2022.124167" @default.
- W4225320732 hasPublicationYear "2022" @default.
- W4225320732 type Work @default.
- W4225320732 citedByCount "13" @default.
- W4225320732 countsByYear W42253207322022 @default.
- W4225320732 countsByYear W42253207322023 @default.
- W4225320732 crossrefType "journal-article" @default.
- W4225320732 hasAuthorship W4225320732A5075522947 @default.
- W4225320732 hasAuthorship W4225320732A5079086854 @default.
- W4225320732 hasConcept C104779481 @default.
- W4225320732 hasConcept C11413529 @default.
- W4225320732 hasConcept C12267149 @default.
- W4225320732 hasConcept C140205800 @default.
- W4225320732 hasConcept C154945302 @default.
- W4225320732 hasConcept C181335050 @default.
- W4225320732 hasConcept C18903297 @default.
- W4225320732 hasConcept C191544260 @default.
- W4225320732 hasConcept C2777052490 @default.
- W4225320732 hasConcept C2779200991 @default.
- W4225320732 hasConcept C33923547 @default.
- W4225320732 hasConcept C41008148 @default.
- W4225320732 hasConcept C47737302 @default.
- W4225320732 hasConcept C86803240 @default.
- W4225320732 hasConceptScore W4225320732C104779481 @default.
- W4225320732 hasConceptScore W4225320732C11413529 @default.
- W4225320732 hasConceptScore W4225320732C12267149 @default.
- W4225320732 hasConceptScore W4225320732C140205800 @default.
- W4225320732 hasConceptScore W4225320732C154945302 @default.
- W4225320732 hasConceptScore W4225320732C181335050 @default.
- W4225320732 hasConceptScore W4225320732C18903297 @default.
- W4225320732 hasConceptScore W4225320732C191544260 @default.
- W4225320732 hasConceptScore W4225320732C2777052490 @default.
- W4225320732 hasConceptScore W4225320732C2779200991 @default.
- W4225320732 hasConceptScore W4225320732C33923547 @default.
- W4225320732 hasConceptScore W4225320732C41008148 @default.
- W4225320732 hasConceptScore W4225320732C47737302 @default.
- W4225320732 hasConceptScore W4225320732C86803240 @default.
- W4225320732 hasLocation W42253207321 @default.
- W4225320732 hasOpenAccess W4225320732 @default.
- W4225320732 hasPrimaryLocation W42253207321 @default.
- W4225320732 hasRelatedWork W2141424831 @default.
- W4225320732 hasRelatedWork W2352931038 @default.
- W4225320732 hasRelatedWork W2375250337 @default.
- W4225320732 hasRelatedWork W2380140512 @default.
- W4225320732 hasRelatedWork W2543310998 @default.
- W4225320732 hasRelatedWork W3202432709 @default.
- W4225320732 hasRelatedWork W4210445479 @default.
- W4225320732 hasRelatedWork W4210648074 @default.
- W4225320732 hasRelatedWork W4287180411 @default.
- W4225320732 hasRelatedWork W792624240 @default.
- W4225320732 hasVolume "253" @default.
- W4225320732 isParatext "false" @default.
- W4225320732 isRetracted "false" @default.
- W4225320732 workType "article" @default.