Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225320889> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4225320889 abstract "Machine learning has been widely used for solving several data processing tasks and recently found applications in data compression domain as well, notably for point cloud (PC). Compression techniques based on deep learning (DL) methods such as convolutional neural network (CNN) have enabled exploiting higher dimensional correlations for improved performance. The most common DL based choice for point cloud compression (PCC) is an autoencoder, while there are few implementations that use recurrent neural network (RNN) and fully connected neural network. This paper surveys the on-going research on PCC using ML approaches. The benchmark datasets with performance metrics are also included. The survey shows the machine learning based methods offer performance comparable to conventional coding methods, while point out directions of promising improvements in the future." @default.
- W4225320889 created "2022-05-05" @default.
- W4225320889 creator A5019712543 @default.
- W4225320889 creator A5029314099 @default.
- W4225320889 creator A5054958450 @default.
- W4225320889 date "2022-03-26" @default.
- W4225320889 modified "2023-10-16" @default.
- W4225320889 title "A Survey on 3D Point Cloud Compression Using Machine Learning Approaches" @default.
- W4225320889 cites W2560609797 @default.
- W4225320889 cites W2789625992 @default.
- W4225320889 cites W2926206832 @default.
- W4225320889 cites W2963727135 @default.
- W4225320889 cites W2964287951 @default.
- W4225320889 cites W2968591670 @default.
- W4225320889 cites W2999042965 @default.
- W4225320889 cites W3012518760 @default.
- W4225320889 cites W3014200484 @default.
- W4225320889 cites W3034310863 @default.
- W4225320889 cites W3034477768 @default.
- W4225320889 cites W3046961466 @default.
- W4225320889 cites W3081203363 @default.
- W4225320889 cites W3096564590 @default.
- W4225320889 cites W3098518823 @default.
- W4225320889 cites W3113844551 @default.
- W4225320889 cites W3124156897 @default.
- W4225320889 cites W3131242954 @default.
- W4225320889 cites W3161580547 @default.
- W4225320889 cites W3205489440 @default.
- W4225320889 doi "https://doi.org/10.1109/southeastcon48659.2022.9763998" @default.
- W4225320889 hasPublicationYear "2022" @default.
- W4225320889 type Work @default.
- W4225320889 citedByCount "3" @default.
- W4225320889 countsByYear W42253208892022 @default.
- W4225320889 countsByYear W42253208892023 @default.
- W4225320889 crossrefType "proceedings-article" @default.
- W4225320889 hasAuthorship W4225320889A5019712543 @default.
- W4225320889 hasAuthorship W4225320889A5029314099 @default.
- W4225320889 hasAuthorship W4225320889A5054958450 @default.
- W4225320889 hasConcept C101738243 @default.
- W4225320889 hasConcept C105795698 @default.
- W4225320889 hasConcept C108583219 @default.
- W4225320889 hasConcept C111919701 @default.
- W4225320889 hasConcept C119857082 @default.
- W4225320889 hasConcept C124101348 @default.
- W4225320889 hasConcept C131979681 @default.
- W4225320889 hasConcept C13280743 @default.
- W4225320889 hasConcept C154945302 @default.
- W4225320889 hasConcept C179518139 @default.
- W4225320889 hasConcept C185798385 @default.
- W4225320889 hasConcept C199360897 @default.
- W4225320889 hasConcept C205649164 @default.
- W4225320889 hasConcept C26713055 @default.
- W4225320889 hasConcept C33923547 @default.
- W4225320889 hasConcept C41008148 @default.
- W4225320889 hasConcept C50644808 @default.
- W4225320889 hasConcept C78548338 @default.
- W4225320889 hasConcept C79974875 @default.
- W4225320889 hasConcept C81363708 @default.
- W4225320889 hasConceptScore W4225320889C101738243 @default.
- W4225320889 hasConceptScore W4225320889C105795698 @default.
- W4225320889 hasConceptScore W4225320889C108583219 @default.
- W4225320889 hasConceptScore W4225320889C111919701 @default.
- W4225320889 hasConceptScore W4225320889C119857082 @default.
- W4225320889 hasConceptScore W4225320889C124101348 @default.
- W4225320889 hasConceptScore W4225320889C131979681 @default.
- W4225320889 hasConceptScore W4225320889C13280743 @default.
- W4225320889 hasConceptScore W4225320889C154945302 @default.
- W4225320889 hasConceptScore W4225320889C179518139 @default.
- W4225320889 hasConceptScore W4225320889C185798385 @default.
- W4225320889 hasConceptScore W4225320889C199360897 @default.
- W4225320889 hasConceptScore W4225320889C205649164 @default.
- W4225320889 hasConceptScore W4225320889C26713055 @default.
- W4225320889 hasConceptScore W4225320889C33923547 @default.
- W4225320889 hasConceptScore W4225320889C41008148 @default.
- W4225320889 hasConceptScore W4225320889C50644808 @default.
- W4225320889 hasConceptScore W4225320889C78548338 @default.
- W4225320889 hasConceptScore W4225320889C79974875 @default.
- W4225320889 hasConceptScore W4225320889C81363708 @default.
- W4225320889 hasLocation W42253208891 @default.
- W4225320889 hasOpenAccess W4225320889 @default.
- W4225320889 hasPrimaryLocation W42253208891 @default.
- W4225320889 hasRelatedWork W1485630101 @default.
- W4225320889 hasRelatedWork W2656617639 @default.
- W4225320889 hasRelatedWork W2669956259 @default.
- W4225320889 hasRelatedWork W2731899572 @default.
- W4225320889 hasRelatedWork W2939353110 @default.
- W4225320889 hasRelatedWork W3116150086 @default.
- W4225320889 hasRelatedWork W3133861977 @default.
- W4225320889 hasRelatedWork W4200173597 @default.
- W4225320889 hasRelatedWork W4312417841 @default.
- W4225320889 hasRelatedWork W4321369474 @default.
- W4225320889 isParatext "false" @default.
- W4225320889 isRetracted "false" @default.
- W4225320889 workType "article" @default.