Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225321588> ?p ?o ?g. }
- W4225321588 abstract "Abstract The global mean surface temperature (GMST) record exhibits both interannual to multidecadal variability and a long‐term warming trend due to external climate forcing. To explore the predictability of temporary slowdowns in decadal warming, we apply an artificial neural network (ANN) to climate model data from the Community Earth System Model Version 2 Large Ensemble. Here, an ANN is tasked with whether or not there will be a slowdown in the rate of the GMST trend by using maps of ocean heat content (OHC) at the onset. Through a machine learning explainability method, we find the ANN is learning off‐equatorial patterns of anomalous OHC that resemble transitions in the phase of the Interdecadal Pacific Oscillation in order to make slowdown predictions. Finally, we test our ANN on observed historical data, which further reveals how explainable neural networks are useful tools for understanding decadal variability in both climate models and observations." @default.
- W4225321588 created "2022-05-05" @default.
- W4225321588 creator A5038101556 @default.
- W4225321588 creator A5054390435 @default.
- W4225321588 date "2022-05-09" @default.
- W4225321588 modified "2023-10-14" @default.
- W4225321588 title "Predicting Slowdowns in Decadal Climate Warming Trends With Explainable Neural Networks" @default.
- W4225321588 cites W1542235505 @default.
- W4225321588 cites W1787224781 @default.
- W4225321588 cites W1863529719 @default.
- W4225321588 cites W1895350643 @default.
- W4225321588 cites W1930049085 @default.
- W4225321588 cites W1970327765 @default.
- W4225321588 cites W1974714146 @default.
- W4225321588 cites W1975860235 @default.
- W4225321588 cites W1978648105 @default.
- W4225321588 cites W1980500788 @default.
- W4225321588 cites W1989668498 @default.
- W4225321588 cites W1992491565 @default.
- W4225321588 cites W2010169803 @default.
- W4225321588 cites W2011301426 @default.
- W4225321588 cites W2021057500 @default.
- W4225321588 cites W2026320710 @default.
- W4225321588 cites W2030472866 @default.
- W4225321588 cites W2032517234 @default.
- W4225321588 cites W2034434715 @default.
- W4225321588 cites W2041168744 @default.
- W4225321588 cites W2051880259 @default.
- W4225321588 cites W2053132433 @default.
- W4225321588 cites W2060483077 @default.
- W4225321588 cites W2064948279 @default.
- W4225321588 cites W2082001988 @default.
- W4225321588 cites W2088906529 @default.
- W4225321588 cites W2097481556 @default.
- W4225321588 cites W2097536848 @default.
- W4225321588 cites W2099469011 @default.
- W4225321588 cites W2114736124 @default.
- W4225321588 cites W2115247641 @default.
- W4225321588 cites W2124901782 @default.
- W4225321588 cites W2125634634 @default.
- W4225321588 cites W2132357963 @default.
- W4225321588 cites W2132846215 @default.
- W4225321588 cites W2134634125 @default.
- W4225321588 cites W2146487757 @default.
- W4225321588 cites W2148996355 @default.
- W4225321588 cites W2165849447 @default.
- W4225321588 cites W2170440257 @default.
- W4225321588 cites W2193503481 @default.
- W4225321588 cites W2195388612 @default.
- W4225321588 cites W2277855037 @default.
- W4225321588 cites W2285422781 @default.
- W4225321588 cites W2294682052 @default.
- W4225321588 cites W2297843773 @default.
- W4225321588 cites W2322747575 @default.
- W4225321588 cites W2335353538 @default.
- W4225321588 cites W2337225114 @default.
- W4225321588 cites W2442930273 @default.
- W4225321588 cites W2463517946 @default.
- W4225321588 cites W2498739482 @default.
- W4225321588 cites W2512174018 @default.
- W4225321588 cites W2538529636 @default.
- W4225321588 cites W2594584909 @default.
- W4225321588 cites W2597602089 @default.
- W4225321588 cites W2605627462 @default.
- W4225321588 cites W2610782730 @default.
- W4225321588 cites W2624831228 @default.
- W4225321588 cites W2744342308 @default.
- W4225321588 cites W2750656763 @default.
- W4225321588 cites W2754728072 @default.
- W4225321588 cites W2761258498 @default.
- W4225321588 cites W2770679673 @default.
- W4225321588 cites W2883381053 @default.
- W4225321588 cites W2888747494 @default.
- W4225321588 cites W2904035360 @default.
- W4225321588 cites W2904981858 @default.
- W4225321588 cites W2909390430 @default.
- W4225321588 cites W2913323966 @default.
- W4225321588 cites W2917086543 @default.
- W4225321588 cites W2936503027 @default.
- W4225321588 cites W2942397835 @default.
- W4225321588 cites W2946160190 @default.
- W4225321588 cites W2946779411 @default.
- W4225321588 cites W2960797162 @default.
- W4225321588 cites W2969309273 @default.
- W4225321588 cites W2971764860 @default.
- W4225321588 cites W2973731563 @default.
- W4225321588 cites W2992720244 @default.
- W4225321588 cites W2993514765 @default.
- W4225321588 cites W2998885490 @default.
- W4225321588 cites W3003261352 @default.
- W4225321588 cites W3004446201 @default.
- W4225321588 cites W3010560571 @default.
- W4225321588 cites W3010591325 @default.
- W4225321588 cites W3025949386 @default.
- W4225321588 cites W3027664173 @default.
- W4225321588 cites W3034066845 @default.
- W4225321588 cites W3042465558 @default.
- W4225321588 cites W3080784028 @default.
- W4225321588 cites W3082330840 @default.
- W4225321588 cites W3085790605 @default.