Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225322348> ?p ?o ?g. }
- W4225322348 endingPage "104288" @default.
- W4225322348 startingPage "104288" @default.
- W4225322348 abstract "Despite the seismic vulnerability of non-structural Exterior Infill Walls (EIWs), their resilient design has received minimal attention. This study addresses the issue by proposing a novel framework for predicting possible damage states of EIWs. The framework benefits from an automated combination of Building Information Modeling as a visualized 3D database of the building's components and the Machine Learning classification as the prediction engine. The framework's applicability is studied in a Proof of Concept example of the exterior walls of the buildings damaged in the 2017 earthquake in Kermanshah, Iran. The Extremely Randomized Trees classifier produced the best results for predicting new cases with an overall accuracy of %86. The trained model is used to develop a system for predicting the damage states of EIWs of a new building. The proposed framework works as a complementary tool in buildings' design and operation phases to enhance EIWs' seismic resilience." @default.
- W4225322348 created "2022-05-05" @default.
- W4225322348 creator A5050878993 @default.
- W4225322348 creator A5061911206 @default.
- W4225322348 creator A5071740992 @default.
- W4225322348 date "2022-07-01" @default.
- W4225322348 modified "2023-10-18" @default.
- W4225322348 title "BIM and machine learning in seismic damage prediction for non-structural exterior infill walls" @default.
- W4225322348 cites W1996020380 @default.
- W4225322348 cites W2024664655 @default.
- W4225322348 cites W2040511331 @default.
- W4225322348 cites W2069639155 @default.
- W4225322348 cites W2097935022 @default.
- W4225322348 cites W2123504579 @default.
- W4225322348 cites W2146081683 @default.
- W4225322348 cites W2147338242 @default.
- W4225322348 cites W2150801658 @default.
- W4225322348 cites W2156665896 @default.
- W4225322348 cites W2171308009 @default.
- W4225322348 cites W2269539093 @default.
- W4225322348 cites W2313038787 @default.
- W4225322348 cites W2369832447 @default.
- W4225322348 cites W2478698363 @default.
- W4225322348 cites W2504522969 @default.
- W4225322348 cites W2518869654 @default.
- W4225322348 cites W2533243433 @default.
- W4225322348 cites W2741099223 @default.
- W4225322348 cites W2753485158 @default.
- W4225322348 cites W2788697198 @default.
- W4225322348 cites W2789456918 @default.
- W4225322348 cites W2793512307 @default.
- W4225322348 cites W2793734850 @default.
- W4225322348 cites W2793964127 @default.
- W4225322348 cites W2795952822 @default.
- W4225322348 cites W2796105695 @default.
- W4225322348 cites W2800925521 @default.
- W4225322348 cites W2804012388 @default.
- W4225322348 cites W2806007977 @default.
- W4225322348 cites W2886790603 @default.
- W4225322348 cites W2901196468 @default.
- W4225322348 cites W2903661810 @default.
- W4225322348 cites W2914293754 @default.
- W4225322348 cites W2922266950 @default.
- W4225322348 cites W2965364867 @default.
- W4225322348 cites W2974551902 @default.
- W4225322348 cites W2975951335 @default.
- W4225322348 cites W2981820615 @default.
- W4225322348 cites W2987361643 @default.
- W4225322348 cites W3000005686 @default.
- W4225322348 cites W3004561011 @default.
- W4225322348 cites W3005631159 @default.
- W4225322348 cites W3005759976 @default.
- W4225322348 cites W3014997122 @default.
- W4225322348 cites W3036246077 @default.
- W4225322348 cites W3039293016 @default.
- W4225322348 cites W3046705597 @default.
- W4225322348 cites W3082685366 @default.
- W4225322348 cites W3099802519 @default.
- W4225322348 cites W3138638228 @default.
- W4225322348 doi "https://doi.org/10.1016/j.autcon.2022.104288" @default.
- W4225322348 hasPublicationYear "2022" @default.
- W4225322348 type Work @default.
- W4225322348 citedByCount "6" @default.
- W4225322348 countsByYear W42253223482023 @default.
- W4225322348 crossrefType "journal-article" @default.
- W4225322348 hasAuthorship W4225322348A5050878993 @default.
- W4225322348 hasAuthorship W4225322348A5061911206 @default.
- W4225322348 hasAuthorship W4225322348A5071740992 @default.
- W4225322348 hasConcept C107053488 @default.
- W4225322348 hasConcept C119857082 @default.
- W4225322348 hasConcept C127413603 @default.
- W4225322348 hasConcept C137176749 @default.
- W4225322348 hasConcept C154945302 @default.
- W4225322348 hasConcept C15744967 @default.
- W4225322348 hasConcept C167063184 @default.
- W4225322348 hasConcept C2781219549 @default.
- W4225322348 hasConcept C38652104 @default.
- W4225322348 hasConcept C41008148 @default.
- W4225322348 hasConcept C542102704 @default.
- W4225322348 hasConcept C66938386 @default.
- W4225322348 hasConcept C95623464 @default.
- W4225322348 hasConcept C95713431 @default.
- W4225322348 hasConceptScore W4225322348C107053488 @default.
- W4225322348 hasConceptScore W4225322348C119857082 @default.
- W4225322348 hasConceptScore W4225322348C127413603 @default.
- W4225322348 hasConceptScore W4225322348C137176749 @default.
- W4225322348 hasConceptScore W4225322348C154945302 @default.
- W4225322348 hasConceptScore W4225322348C15744967 @default.
- W4225322348 hasConceptScore W4225322348C167063184 @default.
- W4225322348 hasConceptScore W4225322348C2781219549 @default.
- W4225322348 hasConceptScore W4225322348C38652104 @default.
- W4225322348 hasConceptScore W4225322348C41008148 @default.
- W4225322348 hasConceptScore W4225322348C542102704 @default.
- W4225322348 hasConceptScore W4225322348C66938386 @default.
- W4225322348 hasConceptScore W4225322348C95623464 @default.
- W4225322348 hasConceptScore W4225322348C95713431 @default.
- W4225322348 hasFunder F4320321157 @default.
- W4225322348 hasLocation W42253223481 @default.