Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225323193> ?p ?o ?g. }
- W4225323193 endingPage "5072" @default.
- W4225323193 startingPage "5072" @default.
- W4225323193 abstract "The Michaelis–Menten model of enzyme kinetic assumes the free ligand approximation, the steady-state approximation and the rapid equilibrium approximation. Analytical methods to model slow-binding inhibitors by the analysis of initial velocities have been developed but, due to their inherent complexity, they are seldom employed. In order to circumvent the complications that arise from the violation of the rapid equilibrium assumption, inhibition is commonly evaluated by pre-incubating the enzyme and the inhibitors so that, even for slow inhibitors, the binding equilibrium is established before the reaction is started. Here, we show that for long drug-target residence time inhibitors, the conventional analysis of initial velocities by the linear regression of double-reciprocal plots fails to provide a correct description of the inhibition mechanism. As a case study, the inhibition of acetylcholinesterase by galantamine, a drug approved for the symptomatic treatment of Alzheimer’s disease, is reported. For over 50 years, analysis based on the conventional steady-state model has overlooked the time-dependent nature of galantamine inhibition, leading to an erroneous assessment of the drug potency and, hence, to discrepancies between biochemical data and the pharmacological evidence. Re-examination of acetylcholinesterase inhibition by pre-steady state analysis of the reaction progress curves showed that the potency of galantamine has indeed been underestimated by a factor of ~100." @default.
- W4225323193 created "2022-05-05" @default.
- W4225323193 creator A5009559253 @default.
- W4225323193 creator A5034494140 @default.
- W4225323193 date "2022-05-03" @default.
- W4225323193 modified "2023-09-27" @default.
- W4225323193 title "Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer’s Drug Galantamine" @default.
- W4225323193 cites W1501954618 @default.
- W4225323193 cites W1587498640 @default.
- W4225323193 cites W1590230654 @default.
- W4225323193 cites W1873795791 @default.
- W4225323193 cites W1941904320 @default.
- W4225323193 cites W1964869721 @default.
- W4225323193 cites W1967105697 @default.
- W4225323193 cites W1971048984 @default.
- W4225323193 cites W1975787655 @default.
- W4225323193 cites W1976785012 @default.
- W4225323193 cites W1977681279 @default.
- W4225323193 cites W1988351304 @default.
- W4225323193 cites W2000352547 @default.
- W4225323193 cites W2009420996 @default.
- W4225323193 cites W2016408686 @default.
- W4225323193 cites W2017645489 @default.
- W4225323193 cites W2018894246 @default.
- W4225323193 cites W2021667660 @default.
- W4225323193 cites W2024623973 @default.
- W4225323193 cites W2035368481 @default.
- W4225323193 cites W2035387023 @default.
- W4225323193 cites W2035832119 @default.
- W4225323193 cites W2045637398 @default.
- W4225323193 cites W2048822589 @default.
- W4225323193 cites W2065110936 @default.
- W4225323193 cites W2078155430 @default.
- W4225323193 cites W2085083700 @default.
- W4225323193 cites W2085907924 @default.
- W4225323193 cites W2085958374 @default.
- W4225323193 cites W2097802864 @default.
- W4225323193 cites W2104156437 @default.
- W4225323193 cites W2112006614 @default.
- W4225323193 cites W2116677499 @default.
- W4225323193 cites W2122161413 @default.
- W4225323193 cites W2158062848 @default.
- W4225323193 cites W2207535250 @default.
- W4225323193 cites W2256932513 @default.
- W4225323193 cites W2288305088 @default.
- W4225323193 cites W2404780897 @default.
- W4225323193 cites W2418181248 @default.
- W4225323193 cites W2519235969 @default.
- W4225323193 cites W2531401861 @default.
- W4225323193 cites W2607348308 @default.
- W4225323193 cites W2664285537 @default.
- W4225323193 cites W2724806862 @default.
- W4225323193 cites W2734510265 @default.
- W4225323193 cites W2739282096 @default.
- W4225323193 cites W2775548182 @default.
- W4225323193 cites W2793690814 @default.
- W4225323193 cites W2795186452 @default.
- W4225323193 cites W2796468290 @default.
- W4225323193 cites W2801697388 @default.
- W4225323193 cites W2942419925 @default.
- W4225323193 cites W2948507114 @default.
- W4225323193 cites W3026310980 @default.
- W4225323193 cites W3043838550 @default.
- W4225323193 cites W3047221076 @default.
- W4225323193 cites W3083556913 @default.
- W4225323193 cites W3105895642 @default.
- W4225323193 cites W3116286913 @default.
- W4225323193 cites W3182215044 @default.
- W4225323193 cites W3194926565 @default.
- W4225323193 cites W3203246370 @default.
- W4225323193 cites W3215525670 @default.
- W4225323193 cites W4210966619 @default.
- W4225323193 cites W4231423936 @default.
- W4225323193 cites W4232516514 @default.
- W4225323193 cites W4238048406 @default.
- W4225323193 doi "https://doi.org/10.3390/ijms23095072" @default.
- W4225323193 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35563466" @default.
- W4225323193 hasPublicationYear "2022" @default.
- W4225323193 type Work @default.
- W4225323193 citedByCount "6" @default.
- W4225323193 countsByYear W42253231932022 @default.
- W4225323193 countsByYear W42253231932023 @default.
- W4225323193 crossrefType "journal-article" @default.
- W4225323193 hasAuthorship W4225323193A5009559253 @default.
- W4225323193 hasAuthorship W4225323193A5034494140 @default.
- W4225323193 hasBestOaLocation W42253231931 @default.
- W4225323193 hasConcept C126322002 @default.
- W4225323193 hasConcept C147789679 @default.
- W4225323193 hasConcept C181199279 @default.
- W4225323193 hasConcept C185592680 @default.
- W4225323193 hasConcept C202751555 @default.
- W4225323193 hasConcept C2778816929 @default.
- W4225323193 hasConcept C2779056891 @default.
- W4225323193 hasConcept C2779134260 @default.
- W4225323193 hasConcept C2779483572 @default.
- W4225323193 hasConcept C2780035454 @default.
- W4225323193 hasConcept C2780904820 @default.
- W4225323193 hasConcept C41183919 @default.