Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225332073> ?p ?o ?g. }
- W4225332073 endingPage "103739" @default.
- W4225332073 startingPage "103739" @default.
- W4225332073 abstract "Computer-aided cervical cell classification using Pap smears or Thinprep cytologic test (TCT) have been widely applied as a high effective screening tool, by which the cells are classified into different subclasses. However, existing classification approaches mainly rely on single detection structure, like deep learning or hand-crafted methods, which have huge computation complexity and lower accuracy. So far, no cell spectrum is applied for classification. This paper addresses the limitations by making the first attempt to use the multi-domain hybrid deep learning framework (MDHDN) for the classification of cervical cells. Cell deep features from multi-domain (time and frequency) are extracted by the pretrained VGG-19 (Visual Geometry Group-19), which is the deep Convolutional Neural Network (CNN) with a hashing layer after the last fully connected layer. Hand-crafted features for the original images are processed with the feature selection, clustering and dimensionality reduction. Then the three subchannels of the proposed framework output the category results using the SVM classifier, the final cell diagnosis is generated by the correlation analysis. Results show that the proposed approach obtains the similar performance with the state-of-the-art models using the novel structure, whose accuracy, sensitivity, and specificity are 98.7%, 98.2%, 98.9% in Herlev dataset when applying five-fold cross-validation, respectively. Similar superior classification performance is achieved on the BJTU dataset, validation on the SIPaKMeD dataset also proves its generalization ability. The proposed novel screening framework is promising for the early diagnosis of cervical cancer, multi-domain and hybrid features are proved feasible in clinical practice." @default.
- W4225332073 created "2022-05-05" @default.
- W4225332073 creator A5003240149 @default.
- W4225332073 creator A5005672790 @default.
- W4225332073 creator A5019818084 @default.
- W4225332073 creator A5055476017 @default.
- W4225332073 date "2022-08-01" @default.
- W4225332073 modified "2023-10-11" @default.
- W4225332073 title "Auxiliary classification of cervical cells based on multi-domain hybrid deep learning framework" @default.
- W4225332073 cites W1535602073 @default.
- W4225332073 cites W1574447377 @default.
- W4225332073 cites W1829380873 @default.
- W4225332073 cites W2013600570 @default.
- W4225332073 cites W2063910191 @default.
- W4225332073 cites W2069321575 @default.
- W4225332073 cites W2081719476 @default.
- W4225332073 cites W2132269817 @default.
- W4225332073 cites W2135045906 @default.
- W4225332073 cites W2409455427 @default.
- W4225332073 cites W2537988091 @default.
- W4225332073 cites W2594429093 @default.
- W4225332073 cites W2615890952 @default.
- W4225332073 cites W2758360592 @default.
- W4225332073 cites W2763148304 @default.
- W4225332073 cites W2775870354 @default.
- W4225332073 cites W2794393856 @default.
- W4225332073 cites W2917953120 @default.
- W4225332073 cites W2939345579 @default.
- W4225332073 cites W2944754204 @default.
- W4225332073 cites W2963150697 @default.
- W4225332073 cites W2964269074 @default.
- W4225332073 cites W2969980243 @default.
- W4225332073 cites W2970091429 @default.
- W4225332073 cites W2972574169 @default.
- W4225332073 cites W2972621596 @default.
- W4225332073 cites W2993250673 @default.
- W4225332073 cites W2998727463 @default.
- W4225332073 cites W2999125814 @default.
- W4225332073 cites W3012086464 @default.
- W4225332073 cites W3014480392 @default.
- W4225332073 cites W3020713926 @default.
- W4225332073 cites W3034553879 @default.
- W4225332073 cites W3037626306 @default.
- W4225332073 cites W3037763840 @default.
- W4225332073 cites W3093496925 @default.
- W4225332073 cites W3095321132 @default.
- W4225332073 cites W3099183222 @default.
- W4225332073 cites W3102042549 @default.
- W4225332073 cites W3102737931 @default.
- W4225332073 cites W3102762242 @default.
- W4225332073 cites W3117627952 @default.
- W4225332073 cites W3118603985 @default.
- W4225332073 cites W3127773563 @default.
- W4225332073 cites W3131696613 @default.
- W4225332073 cites W3134034555 @default.
- W4225332073 cites W3140073993 @default.
- W4225332073 cites W3190636774 @default.
- W4225332073 doi "https://doi.org/10.1016/j.bspc.2022.103739" @default.
- W4225332073 hasPublicationYear "2022" @default.
- W4225332073 type Work @default.
- W4225332073 citedByCount "6" @default.
- W4225332073 countsByYear W42253320732022 @default.
- W4225332073 countsByYear W42253320732023 @default.
- W4225332073 crossrefType "journal-article" @default.
- W4225332073 hasAuthorship W4225332073A5003240149 @default.
- W4225332073 hasAuthorship W4225332073A5005672790 @default.
- W4225332073 hasAuthorship W4225332073A5019818084 @default.
- W4225332073 hasAuthorship W4225332073A5055476017 @default.
- W4225332073 hasConcept C108583219 @default.
- W4225332073 hasConcept C119857082 @default.
- W4225332073 hasConcept C12267149 @default.
- W4225332073 hasConcept C148483581 @default.
- W4225332073 hasConcept C153180895 @default.
- W4225332073 hasConcept C154945302 @default.
- W4225332073 hasConcept C169903167 @default.
- W4225332073 hasConcept C41008148 @default.
- W4225332073 hasConcept C70518039 @default.
- W4225332073 hasConcept C73555534 @default.
- W4225332073 hasConcept C81363708 @default.
- W4225332073 hasConcept C95623464 @default.
- W4225332073 hasConceptScore W4225332073C108583219 @default.
- W4225332073 hasConceptScore W4225332073C119857082 @default.
- W4225332073 hasConceptScore W4225332073C12267149 @default.
- W4225332073 hasConceptScore W4225332073C148483581 @default.
- W4225332073 hasConceptScore W4225332073C153180895 @default.
- W4225332073 hasConceptScore W4225332073C154945302 @default.
- W4225332073 hasConceptScore W4225332073C169903167 @default.
- W4225332073 hasConceptScore W4225332073C41008148 @default.
- W4225332073 hasConceptScore W4225332073C70518039 @default.
- W4225332073 hasConceptScore W4225332073C73555534 @default.
- W4225332073 hasConceptScore W4225332073C81363708 @default.
- W4225332073 hasConceptScore W4225332073C95623464 @default.
- W4225332073 hasFunder F4320323066 @default.
- W4225332073 hasLocation W42253320731 @default.
- W4225332073 hasOpenAccess W4225332073 @default.
- W4225332073 hasPrimaryLocation W42253320731 @default.
- W4225332073 hasRelatedWork W2066259560 @default.
- W4225332073 hasRelatedWork W2731899572 @default.