Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225335144> ?p ?o ?g. }
- W4225335144 endingPage "37891" @default.
- W4225335144 startingPage "37882" @default.
- W4225335144 abstract "Plant identification has applications in ethnopharmacology and agriculture. Since leaves are one of a distinguishable feature of a plant, they are routinely used for identification. Recent developments in deep learning have made it possible to accurately identify the majority of samples in five publicly available leaf datasets. However, each dataset captures the images in a highly controlled environment. This paper evaluates the performance of EfficientNet and several other convolutional neural network (CNN) architectures when applied to a combination of the LeafSnap, Middle European Woody Plants 2014, Flavia, Swedish, and Folio datasets. To normalize the impact of imbalance resulting from combining the original datasets, we used oversampling, undersampling, and transfer learning techniques to construct an end-to-end CNN classifier. We placed greater emphasis on metrics appropriate for a diverse-imbalanced dataset rather than stressing high performance on any one of the original datasets. A model from EfficientNet’s family of CNN models achieved a highly accurate F-score of 0.9861 on the combined dataset." @default.
- W4225335144 created "2022-05-05" @default.
- W4225335144 creator A5017690601 @default.
- W4225335144 creator A5032537329 @default.
- W4225335144 creator A5084280010 @default.
- W4225335144 date "2022-01-01" @default.
- W4225335144 modified "2023-10-14" @default.
- W4225335144 title "Plant Identification in a Combined-Imbalanced Leaf Dataset" @default.
- W4225335144 cites W1705245392 @default.
- W4225335144 cites W1761010383 @default.
- W4225335144 cites W1849277567 @default.
- W4225335144 cites W1968896562 @default.
- W4225335144 cites W1969240661 @default.
- W4225335144 cites W1986654220 @default.
- W4225335144 cites W1993220166 @default.
- W4225335144 cites W2008973833 @default.
- W4225335144 cites W2047116301 @default.
- W4225335144 cites W2097117768 @default.
- W4225335144 cites W2108598243 @default.
- W4225335144 cites W2120911695 @default.
- W4225335144 cites W2183341477 @default.
- W4225335144 cites W2194775991 @default.
- W4225335144 cites W2213241010 @default.
- W4225335144 cites W2312587476 @default.
- W4225335144 cites W2342249984 @default.
- W4225335144 cites W2531409750 @default.
- W4225335144 cites W2568155635 @default.
- W4225335144 cites W2735545280 @default.
- W4225335144 cites W2760244101 @default.
- W4225335144 cites W2795866616 @default.
- W4225335144 cites W2800788706 @default.
- W4225335144 cites W2809480750 @default.
- W4225335144 cites W2895466636 @default.
- W4225335144 cites W2913699554 @default.
- W4225335144 cites W2962858109 @default.
- W4225335144 cites W2963163009 @default.
- W4225335144 cites W2963446712 @default.
- W4225335144 cites W2964854982 @default.
- W4225335144 cites W2965658867 @default.
- W4225335144 cites W2986261902 @default.
- W4225335144 cites W2988063103 @default.
- W4225335144 cites W3007004976 @default.
- W4225335144 cites W3015581086 @default.
- W4225335144 cites W3047532279 @default.
- W4225335144 cites W3165807380 @default.
- W4225335144 cites W3204093460 @default.
- W4225335144 cites W352141067 @default.
- W4225335144 doi "https://doi.org/10.1109/access.2022.3165583" @default.
- W4225335144 hasPublicationYear "2022" @default.
- W4225335144 type Work @default.
- W4225335144 citedByCount "4" @default.
- W4225335144 countsByYear W42253351442022 @default.
- W4225335144 countsByYear W42253351442023 @default.
- W4225335144 crossrefType "journal-article" @default.
- W4225335144 hasAuthorship W4225335144A5017690601 @default.
- W4225335144 hasAuthorship W4225335144A5032537329 @default.
- W4225335144 hasAuthorship W4225335144A5084280010 @default.
- W4225335144 hasBestOaLocation W42253351441 @default.
- W4225335144 hasConcept C116834253 @default.
- W4225335144 hasConcept C119857082 @default.
- W4225335144 hasConcept C136536468 @default.
- W4225335144 hasConcept C150899416 @default.
- W4225335144 hasConcept C153180895 @default.
- W4225335144 hasConcept C154945302 @default.
- W4225335144 hasConcept C197323446 @default.
- W4225335144 hasConcept C2776091240 @default.
- W4225335144 hasConcept C2776257435 @default.
- W4225335144 hasConcept C31258907 @default.
- W4225335144 hasConcept C41008148 @default.
- W4225335144 hasConcept C59822182 @default.
- W4225335144 hasConcept C81363708 @default.
- W4225335144 hasConcept C86803240 @default.
- W4225335144 hasConcept C95623464 @default.
- W4225335144 hasConceptScore W4225335144C116834253 @default.
- W4225335144 hasConceptScore W4225335144C119857082 @default.
- W4225335144 hasConceptScore W4225335144C136536468 @default.
- W4225335144 hasConceptScore W4225335144C150899416 @default.
- W4225335144 hasConceptScore W4225335144C153180895 @default.
- W4225335144 hasConceptScore W4225335144C154945302 @default.
- W4225335144 hasConceptScore W4225335144C197323446 @default.
- W4225335144 hasConceptScore W4225335144C2776091240 @default.
- W4225335144 hasConceptScore W4225335144C2776257435 @default.
- W4225335144 hasConceptScore W4225335144C31258907 @default.
- W4225335144 hasConceptScore W4225335144C41008148 @default.
- W4225335144 hasConceptScore W4225335144C59822182 @default.
- W4225335144 hasConceptScore W4225335144C81363708 @default.
- W4225335144 hasConceptScore W4225335144C86803240 @default.
- W4225335144 hasConceptScore W4225335144C95623464 @default.
- W4225335144 hasLocation W42253351441 @default.
- W4225335144 hasOpenAccess W4225335144 @default.
- W4225335144 hasPrimaryLocation W42253351441 @default.
- W4225335144 hasRelatedWork W1665455280 @default.
- W4225335144 hasRelatedWork W2884577377 @default.
- W4225335144 hasRelatedWork W2965531700 @default.
- W4225335144 hasRelatedWork W3021430260 @default.
- W4225335144 hasRelatedWork W3021503072 @default.
- W4225335144 hasRelatedWork W3093300636 @default.
- W4225335144 hasRelatedWork W3176807344 @default.