Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225341306> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4225341306 endingPage "585" @default.
- W4225341306 startingPage "567" @default.
- W4225341306 abstract "BACKGROUND: Processing Low-Intensity Medical Images (LI-MI) is difficult as outcomes are varied when it comes to manual examination, which is also a time-consuming process. OBJECTIVE: To improve the quality of low-intensity images and identify the leukemia classification by utilizing CNN-based Deep Learning (DCNN) strategy. METHODS: The strategies employed for the recognition of leukemia classifications in the advised strategy are DCNN (ResNet-34 & DenseNet-121). The histogram equalization-based adaptive gamma correction followed by guided filtering applies to study the improvement in intensity and preserve the essential details of the image. The DCNN is used as a feature extractor to help classify leukemia types. Two datasets of ASH with 520 images and ALL-IDB with 559 images are used in this study. In 1,079 images, 779 are positive cases depicting leukemia and 300 images are negative (normal) cases. Thus, to validate performance of this DCNN strategy, ASH and ALL-IDB datasets are promoted in the investigation process to classify between positive and negative images. RESULTS: The DCNN classifier yieldes the overall classification accuracy of 99.2% and 98.4%, respectively. In addition, the achieved classification specificity, sensitivity, and precision are 99.3%, 98.7%, 98.4%, and 98.9%, 98.4%,98.6% applying to two datasets, respectively, which are higher than the performance using other machine learning classifiers including support vector machine, decision tree, naive bayes, random forest and VGG-16. CONCLUSION: Ths study demonstrates that the proposed DCNN enables to improve low-intensity images and accuracry of leukemia classification, which is superior to many of other machine leaning classifiers used in this research field." @default.
- W4225341306 created "2022-05-05" @default.
- W4225341306 creator A5030076480 @default.
- W4225341306 creator A5058629295 @default.
- W4225341306 date "2022-04-15" @default.
- W4225341306 modified "2023-10-01" @default.
- W4225341306 title "Leukemia classification using the deep learning method of CNN" @default.
- W4225341306 cites W1722290647 @default.
- W4225341306 cites W2180133023 @default.
- W4225341306 cites W2563823404 @default.
- W4225341306 cites W2724847648 @default.
- W4225341306 cites W2736844740 @default.
- W4225341306 cites W2767241034 @default.
- W4225341306 cites W2800085010 @default.
- W4225341306 cites W2801148351 @default.
- W4225341306 cites W2890671308 @default.
- W4225341306 cites W2895259418 @default.
- W4225341306 cites W2912250162 @default.
- W4225341306 cites W2945767701 @default.
- W4225341306 cites W2959123891 @default.
- W4225341306 cites W2962962930 @default.
- W4225341306 cites W2984930869 @default.
- W4225341306 cites W2987100326 @default.
- W4225341306 cites W2989125372 @default.
- W4225341306 cites W3023476453 @default.
- W4225341306 cites W3045628539 @default.
- W4225341306 cites W3111879617 @default.
- W4225341306 doi "https://doi.org/10.3233/xst-211055" @default.
- W4225341306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35253723" @default.
- W4225341306 hasPublicationYear "2022" @default.
- W4225341306 type Work @default.
- W4225341306 citedByCount "4" @default.
- W4225341306 countsByYear W42253413062022 @default.
- W4225341306 countsByYear W42253413062023 @default.
- W4225341306 crossrefType "journal-article" @default.
- W4225341306 hasAuthorship W4225341306A5030076480 @default.
- W4225341306 hasAuthorship W4225341306A5058629295 @default.
- W4225341306 hasConcept C115961682 @default.
- W4225341306 hasConcept C119857082 @default.
- W4225341306 hasConcept C12267149 @default.
- W4225341306 hasConcept C153180895 @default.
- W4225341306 hasConcept C154945302 @default.
- W4225341306 hasConcept C169258074 @default.
- W4225341306 hasConcept C41008148 @default.
- W4225341306 hasConcept C52001869 @default.
- W4225341306 hasConcept C53533937 @default.
- W4225341306 hasConcept C84525736 @default.
- W4225341306 hasConcept C95623464 @default.
- W4225341306 hasConceptScore W4225341306C115961682 @default.
- W4225341306 hasConceptScore W4225341306C119857082 @default.
- W4225341306 hasConceptScore W4225341306C12267149 @default.
- W4225341306 hasConceptScore W4225341306C153180895 @default.
- W4225341306 hasConceptScore W4225341306C154945302 @default.
- W4225341306 hasConceptScore W4225341306C169258074 @default.
- W4225341306 hasConceptScore W4225341306C41008148 @default.
- W4225341306 hasConceptScore W4225341306C52001869 @default.
- W4225341306 hasConceptScore W4225341306C53533937 @default.
- W4225341306 hasConceptScore W4225341306C84525736 @default.
- W4225341306 hasConceptScore W4225341306C95623464 @default.
- W4225341306 hasIssue "3" @default.
- W4225341306 hasLocation W42253413061 @default.
- W4225341306 hasLocation W42253413062 @default.
- W4225341306 hasOpenAccess W4225341306 @default.
- W4225341306 hasPrimaryLocation W42253413061 @default.
- W4225341306 hasRelatedWork W2985924212 @default.
- W4225341306 hasRelatedWork W3204641204 @default.
- W4225341306 hasRelatedWork W4285407528 @default.
- W4225341306 hasRelatedWork W4289812785 @default.
- W4225341306 hasRelatedWork W4312632137 @default.
- W4225341306 hasRelatedWork W4313070894 @default.
- W4225341306 hasRelatedWork W4321636153 @default.
- W4225341306 hasRelatedWork W4377964522 @default.
- W4225341306 hasRelatedWork W4383746529 @default.
- W4225341306 hasRelatedWork W4384345534 @default.
- W4225341306 hasVolume "30" @default.
- W4225341306 isParatext "false" @default.
- W4225341306 isRetracted "false" @default.
- W4225341306 workType "article" @default.