Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225344255> ?p ?o ?g. }
- W4225344255 endingPage "28894" @default.
- W4225344255 startingPage "28885" @default.
- W4225344255 abstract "Detecting sugar beetroot crops with mechanical damage using machine learning methods is necessary for fine-tuning beet harvester units. The Agrifac HEXX TRAXX harvester with an installed computer vision system was investigated. A video camera (24 fps) was installed above the turbine, which receives the dug-out beets after the digger and is connected to a single-board computer. At the preprocessing stage, static and insignificant image details were revealed. Canny edge detector and excess green minus excess red (ExGR) method were used. The identified areas were excluded from the image. The remaining areas were glued with similar areas of another image. As a result, the number of images entering the second stage of preprocessing was reduced by half. Then Otsu’s binarization was used. The main stage of image processing is divided into two sub-stages: detection and classification. The improved YOLOv4-tiny method was chosen for root crop detection using a single-board computer (SBC). This method allows processing up to 14 images of 416 <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$times416$ </tex-math></inline-formula> pixels with 86% precision and 91% recall. To classify root crop damage, we considered two algorithms as candidates: 1. bag of visual words (BoVW) with a support vector machine (SVM) classifier using histogram of oriented gradients (HOG) and scale-invariant feature transform (SIFT) descriptors; 2. convolutional neural networks (CNN). Under normal lighting conditions, CNN showed the best accuracy, which was 99%. The implemented methods were used to detect and classify blurred images of sugar beetroots, which were previously rejected. For improved YOLOv4-tiny precision was 74% and recall was 70%. CNN classification accuracy was 92.6%." @default.
- W4225344255 created "2022-05-05" @default.
- W4225344255 creator A5014765782 @default.
- W4225344255 creator A5015279601 @default.
- W4225344255 creator A5034591193 @default.
- W4225344255 creator A5057265719 @default.
- W4225344255 creator A5061362871 @default.
- W4225344255 creator A5078918726 @default.
- W4225344255 creator A5088719400 @default.
- W4225344255 date "2022-01-01" @default.
- W4225344255 modified "2023-09-27" @default.
- W4225344255 title "Identification and Classification of Mechanical Damage During Continuous Harvesting of Root Crops Using Computer Vision Methods" @default.
- W4225344255 cites W1990864775 @default.
- W4225344255 cites W2004661569 @default.
- W4225344255 cites W2115352131 @default.
- W4225344255 cites W2945363610 @default.
- W4225344255 cites W2946012733 @default.
- W4225344255 cites W2963392363 @default.
- W4225344255 cites W2963857746 @default.
- W4225344255 cites W3010677011 @default.
- W4225344255 cites W3014107482 @default.
- W4225344255 cites W3021184457 @default.
- W4225344255 cites W3023406973 @default.
- W4225344255 cites W3036123272 @default.
- W4225344255 cites W3041265076 @default.
- W4225344255 cites W3041810394 @default.
- W4225344255 cites W3042011474 @default.
- W4225344255 cites W3042556338 @default.
- W4225344255 cites W3043588540 @default.
- W4225344255 cites W3085312663 @default.
- W4225344255 cites W3109229754 @default.
- W4225344255 cites W3109239026 @default.
- W4225344255 cites W3112798201 @default.
- W4225344255 cites W3126281026 @default.
- W4225344255 cites W3128127427 @default.
- W4225344255 cites W3128804268 @default.
- W4225344255 cites W3137936219 @default.
- W4225344255 cites W3137942153 @default.
- W4225344255 cites W3158114921 @default.
- W4225344255 cites W3165517516 @default.
- W4225344255 cites W3165651119 @default.
- W4225344255 cites W3168859391 @default.
- W4225344255 cites W3171720758 @default.
- W4225344255 cites W3171891302 @default.
- W4225344255 cites W3176129500 @default.
- W4225344255 cites W3176475528 @default.
- W4225344255 cites W3180134609 @default.
- W4225344255 cites W3181037203 @default.
- W4225344255 cites W3181678406 @default.
- W4225344255 cites W3183498921 @default.
- W4225344255 cites W3184248917 @default.
- W4225344255 cites W3185580278 @default.
- W4225344255 cites W3189552497 @default.
- W4225344255 cites W3196145901 @default.
- W4225344255 cites W3196158036 @default.
- W4225344255 cites W3198816046 @default.
- W4225344255 cites W3200771760 @default.
- W4225344255 cites W3201905196 @default.
- W4225344255 cites W3201949836 @default.
- W4225344255 cites W3202618425 @default.
- W4225344255 cites W3203398234 @default.
- W4225344255 cites W3204154151 @default.
- W4225344255 cites W3205373953 @default.
- W4225344255 cites W3209714326 @default.
- W4225344255 cites W3210700604 @default.
- W4225344255 cites W3211540015 @default.
- W4225344255 cites W3214609485 @default.
- W4225344255 cites W3214642793 @default.
- W4225344255 cites W3215512454 @default.
- W4225344255 cites W3215798164 @default.
- W4225344255 cites W3216213780 @default.
- W4225344255 cites W3216362879 @default.
- W4225344255 cites W3217393618 @default.
- W4225344255 cites W3217555506 @default.
- W4225344255 cites W4200264375 @default.
- W4225344255 cites W4205493041 @default.
- W4225344255 cites W4211072735 @default.
- W4225344255 cites W4223971800 @default.
- W4225344255 doi "https://doi.org/10.1109/access.2022.3157619" @default.
- W4225344255 hasPublicationYear "2022" @default.
- W4225344255 type Work @default.
- W4225344255 citedByCount "15" @default.
- W4225344255 countsByYear W42253442552022 @default.
- W4225344255 countsByYear W42253442552023 @default.
- W4225344255 crossrefType "journal-article" @default.
- W4225344255 hasAuthorship W4225344255A5014765782 @default.
- W4225344255 hasAuthorship W4225344255A5015279601 @default.
- W4225344255 hasAuthorship W4225344255A5034591193 @default.
- W4225344255 hasAuthorship W4225344255A5057265719 @default.
- W4225344255 hasAuthorship W4225344255A5061362871 @default.
- W4225344255 hasAuthorship W4225344255A5078918726 @default.
- W4225344255 hasAuthorship W4225344255A5088719400 @default.
- W4225344255 hasBestOaLocation W42253442551 @default.
- W4225344255 hasConcept C115961682 @default.
- W4225344255 hasConcept C12267149 @default.
- W4225344255 hasConcept C136886441 @default.
- W4225344255 hasConcept C144024400 @default.
- W4225344255 hasConcept C14705441 @default.