Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225373802> ?p ?o ?g. }
- W4225373802 endingPage "105577" @default.
- W4225373802 startingPage "105577" @default.
- W4225373802 abstract "Antimicrobial peptides (AMPs) are important for the human immune system and are currently applied in clinical trials. AMPs have been received much attention for accurate recognition. Recently, several computational methods for identifying AMPs have been proposed. However, existing methods have difficulty in accurately predicting AMPs. In this paper, we propose a novel AMP prediction method called AMPpred-EL based on an ensemble learning strategy. AMPred-EL is constructed based on ensemble learning combined with LightGBM and logistic regression. Experimental results demonstrate that AMPpred-EL outperforms several state-of-the-art methods on the benchmark datasets and then improves the efficiency performance." @default.
- W4225373802 created "2022-05-05" @default.
- W4225373802 creator A5017426085 @default.
- W4225373802 creator A5039611523 @default.
- W4225373802 creator A5043795745 @default.
- W4225373802 creator A5048826252 @default.
- W4225373802 creator A5070009201 @default.
- W4225373802 creator A5086329723 @default.
- W4225373802 date "2022-07-01" @default.
- W4225373802 modified "2023-10-14" @default.
- W4225373802 title "AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning" @default.
- W4225373802 cites W1678356000 @default.
- W4225373802 cites W1931581539 @default.
- W4225373802 cites W1978444624 @default.
- W4225373802 cites W1981705708 @default.
- W4225373802 cites W1991476392 @default.
- W4225373802 cites W1997868832 @default.
- W4225373802 cites W2097606916 @default.
- W4225373802 cites W2108995755 @default.
- W4225373802 cites W2110940238 @default.
- W4225373802 cites W2117502874 @default.
- W4225373802 cites W2128495797 @default.
- W4225373802 cites W2129115651 @default.
- W4225373802 cites W2158714788 @default.
- W4225373802 cites W2163316049 @default.
- W4225373802 cites W2175270296 @default.
- W4225373802 cites W2775879243 @default.
- W4225373802 cites W2791848964 @default.
- W4225373802 cites W2793168264 @default.
- W4225373802 cites W2805110914 @default.
- W4225373802 cites W2806146459 @default.
- W4225373802 cites W2807001312 @default.
- W4225373802 cites W2899153547 @default.
- W4225373802 cites W2905629607 @default.
- W4225373802 cites W2914645084 @default.
- W4225373802 cites W2972223935 @default.
- W4225373802 cites W2996061341 @default.
- W4225373802 cites W2998197489 @default.
- W4225373802 cites W2999580270 @default.
- W4225373802 cites W3025501158 @default.
- W4225373802 cites W3036144909 @default.
- W4225373802 cites W3043115370 @default.
- W4225373802 cites W3043480632 @default.
- W4225373802 cites W3047589804 @default.
- W4225373802 cites W3079352602 @default.
- W4225373802 cites W3094708881 @default.
- W4225373802 cites W3096599651 @default.
- W4225373802 cites W3107318968 @default.
- W4225373802 cites W3122585911 @default.
- W4225373802 cites W3139686515 @default.
- W4225373802 cites W3164453494 @default.
- W4225373802 cites W3176004707 @default.
- W4225373802 cites W3179235883 @default.
- W4225373802 cites W3183253630 @default.
- W4225373802 cites W3203741962 @default.
- W4225373802 cites W3208498407 @default.
- W4225373802 cites W3208713201 @default.
- W4225373802 cites W3212968485 @default.
- W4225373802 cites W3217082130 @default.
- W4225373802 cites W4200185639 @default.
- W4225373802 cites W4200398711 @default.
- W4225373802 cites W4312732123 @default.
- W4225373802 cites W4312837179 @default.
- W4225373802 doi "https://doi.org/10.1016/j.compbiomed.2022.105577" @default.
- W4225373802 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35576825" @default.
- W4225373802 hasPublicationYear "2022" @default.
- W4225373802 type Work @default.
- W4225373802 citedByCount "7" @default.
- W4225373802 countsByYear W42253738022022 @default.
- W4225373802 countsByYear W42253738022023 @default.
- W4225373802 crossrefType "journal-article" @default.
- W4225373802 hasAuthorship W4225373802A5017426085 @default.
- W4225373802 hasAuthorship W4225373802A5039611523 @default.
- W4225373802 hasAuthorship W4225373802A5043795745 @default.
- W4225373802 hasAuthorship W4225373802A5048826252 @default.
- W4225373802 hasAuthorship W4225373802A5070009201 @default.
- W4225373802 hasAuthorship W4225373802A5086329723 @default.
- W4225373802 hasConcept C119857082 @default.
- W4225373802 hasConcept C119898033 @default.
- W4225373802 hasConcept C12267149 @default.
- W4225373802 hasConcept C13280743 @default.
- W4225373802 hasConcept C151956035 @default.
- W4225373802 hasConcept C154945302 @default.
- W4225373802 hasConcept C178790620 @default.
- W4225373802 hasConcept C185592680 @default.
- W4225373802 hasConcept C185798385 @default.
- W4225373802 hasConcept C205649164 @default.
- W4225373802 hasConcept C41008148 @default.
- W4225373802 hasConcept C45942800 @default.
- W4225373802 hasConcept C4937899 @default.
- W4225373802 hasConcept C540938839 @default.
- W4225373802 hasConceptScore W4225373802C119857082 @default.
- W4225373802 hasConceptScore W4225373802C119898033 @default.
- W4225373802 hasConceptScore W4225373802C12267149 @default.
- W4225373802 hasConceptScore W4225373802C13280743 @default.
- W4225373802 hasConceptScore W4225373802C151956035 @default.
- W4225373802 hasConceptScore W4225373802C154945302 @default.
- W4225373802 hasConceptScore W4225373802C178790620 @default.