Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225401893> ?p ?o ?g. }
- W4225401893 abstract "Healthcare AI systems exclusively employ classification models for disease detection. However, with the recent research advances into this arena, it has been observed that single classification models have achieved limited accuracy in some cases. Employing fusion of multiple classifiers outputs into a single classification framework has been instrumental in achieving greater accuracy and performing automated big data analysis. The article proposes a bit fusion ensemble algorithm that minimizes the classification error rate and has been tested on various datasets. Five diversified base classifiers k- nearest neighbor (KNN), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Decision Tree (D.T.), and Naïve Bayesian Classifier (N.B.), are used in the implementation model. Bit fusion algorithm works on the individual input from the classifiers. Decision vectors of the base classifier are weighted transformed into binary bits by comparing with high-reliability threshold parameters. The output of each base classifier is considered as soft class vectors (CV). These vectors are weighted, transformed and compared with a high threshold value of initialized δ = 0.9 for reliability. Binary patterns are extracted, and the model is trained and tested again. The standard fusion approach and proposed bit fusion algorithm have been compared by average error rate. The error rate of the Bit-fusion algorithm has been observed with the values 5.97, 12.6, 4.64, 0, 0, 27.28 for Leukemia, Breast cancer, Lung Cancer, Hepatitis, Lymphoma, Embryonal Tumors, respectively. The model is trained and tested over datasets from UCI, UEA, and UCR repositories as well which also have shown reduction in the error rates." @default.
- W4225401893 created "2022-05-05" @default.
- W4225401893 creator A5020077247 @default.
- W4225401893 creator A5025236262 @default.
- W4225401893 creator A5032898759 @default.
- W4225401893 creator A5059340128 @default.
- W4225401893 creator A5060243836 @default.
- W4225401893 creator A5077770842 @default.
- W4225401893 creator A5085316306 @default.
- W4225401893 date "2022-05-04" @default.
- W4225401893 modified "2023-10-18" @default.
- W4225401893 title "Improving the Accuracy of Ensemble Machine Learning Classification Models Using a Novel Bit-Fusion Algorithm for Healthcare AI Systems" @default.
- W4225401893 cites W1498791565 @default.
- W4225401893 cites W1567331820 @default.
- W4225401893 cites W1598626270 @default.
- W4225401893 cites W1967539118 @default.
- W4225401893 cites W1983772724 @default.
- W4225401893 cites W1989790332 @default.
- W4225401893 cites W1997636678 @default.
- W4225401893 cites W2009395135 @default.
- W4225401893 cites W2012903341 @default.
- W4225401893 cites W2021560851 @default.
- W4225401893 cites W2036230782 @default.
- W4225401893 cites W2051819263 @default.
- W4225401893 cites W2063226957 @default.
- W4225401893 cites W2064422318 @default.
- W4225401893 cites W2066269937 @default.
- W4225401893 cites W2088851040 @default.
- W4225401893 cites W2090009938 @default.
- W4225401893 cites W2095727900 @default.
- W4225401893 cites W2100805904 @default.
- W4225401893 cites W2109363337 @default.
- W4225401893 cites W2112634639 @default.
- W4225401893 cites W2132549764 @default.
- W4225401893 cites W2132832266 @default.
- W4225401893 cites W2147246240 @default.
- W4225401893 cites W2147460572 @default.
- W4225401893 cites W2158085049 @default.
- W4225401893 cites W2158275940 @default.
- W4225401893 cites W2160767978 @default.
- W4225401893 cites W2161631032 @default.
- W4225401893 cites W2164568552 @default.
- W4225401893 cites W2167102385 @default.
- W4225401893 cites W2168978575 @default.
- W4225401893 cites W2520194964 @default.
- W4225401893 cites W2555077524 @default.
- W4225401893 cites W2946978350 @default.
- W4225401893 cites W2971516445 @default.
- W4225401893 cites W3160051017 @default.
- W4225401893 cites W3199136933 @default.
- W4225401893 cites W4211194393 @default.
- W4225401893 cites W4236137412 @default.
- W4225401893 cites W4239510810 @default.
- W4225401893 doi "https://doi.org/10.3389/fpubh.2022.858282" @default.
- W4225401893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35602150" @default.
- W4225401893 hasPublicationYear "2022" @default.
- W4225401893 type Work @default.
- W4225401893 citedByCount "5" @default.
- W4225401893 countsByYear W42254018932022 @default.
- W4225401893 countsByYear W42254018932023 @default.
- W4225401893 crossrefType "journal-article" @default.
- W4225401893 hasAuthorship W4225401893A5020077247 @default.
- W4225401893 hasAuthorship W4225401893A5025236262 @default.
- W4225401893 hasAuthorship W4225401893A5032898759 @default.
- W4225401893 hasAuthorship W4225401893A5059340128 @default.
- W4225401893 hasAuthorship W4225401893A5060243836 @default.
- W4225401893 hasAuthorship W4225401893A5077770842 @default.
- W4225401893 hasAuthorship W4225401893A5085316306 @default.
- W4225401893 hasBestOaLocation W42254018931 @default.
- W4225401893 hasConcept C11413529 @default.
- W4225401893 hasConcept C119857082 @default.
- W4225401893 hasConcept C12267149 @default.
- W4225401893 hasConcept C124101348 @default.
- W4225401893 hasConcept C153180895 @default.
- W4225401893 hasConcept C154945302 @default.
- W4225401893 hasConcept C40969351 @default.
- W4225401893 hasConcept C41008148 @default.
- W4225401893 hasConcept C45942800 @default.
- W4225401893 hasConcept C50644808 @default.
- W4225401893 hasConcept C52001869 @default.
- W4225401893 hasConcept C60908668 @default.
- W4225401893 hasConcept C95623464 @default.
- W4225401893 hasConceptScore W4225401893C11413529 @default.
- W4225401893 hasConceptScore W4225401893C119857082 @default.
- W4225401893 hasConceptScore W4225401893C12267149 @default.
- W4225401893 hasConceptScore W4225401893C124101348 @default.
- W4225401893 hasConceptScore W4225401893C153180895 @default.
- W4225401893 hasConceptScore W4225401893C154945302 @default.
- W4225401893 hasConceptScore W4225401893C40969351 @default.
- W4225401893 hasConceptScore W4225401893C41008148 @default.
- W4225401893 hasConceptScore W4225401893C45942800 @default.
- W4225401893 hasConceptScore W4225401893C50644808 @default.
- W4225401893 hasConceptScore W4225401893C52001869 @default.
- W4225401893 hasConceptScore W4225401893C60908668 @default.
- W4225401893 hasConceptScore W4225401893C95623464 @default.
- W4225401893 hasLocation W42254018931 @default.
- W4225401893 hasLocation W42254018932 @default.
- W4225401893 hasLocation W42254018933 @default.
- W4225401893 hasOpenAccess W4225401893 @default.
- W4225401893 hasPrimaryLocation W42254018931 @default.