Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225405144> ?p ?o ?g. }
- W4225405144 endingPage "2559" @default.
- W4225405144 startingPage "2544" @default.
- W4225405144 abstract "Abstract A comprehensive understanding of river dynamics requires the grain size distribution of bed sediments and its variation across different temporal and spatial scales. Several techniques are already available for grain size assessment based on field and remotely sensed data. However, the existing methods are only applicable on small spatial scales and on short time scales. Thus, the operational measurement of grain size distribution of riverbed sediments at the catchment scale remains an open problem. A solution could be the use of satellite images as the main imaging platform. However, this would entail retrieving information at sub‐pixel scales. In this study, we propose a new approach to retrieve sub‐pixel scale grain size class information from Copernicus Sentinel‐2 imagery building upon a new image‐based grain size mapping procedure. Three Italian gravel‐bed rivers featuring different morphologies were selected for unmanned aerial vehicle (UAV) acquisitions, field surveys and laboratory analysis meant to serve as ground truth grain size data, ranging from medium sand to coarse gravel. Grain size maps on the river bars were generated in each study site by exploiting image texture measurements, upscaled and co‐registered with Sentinel‐2 data resolution. Relationships between the grain sizes measured and the reflectance values in Sentinel‐2 imagery were analysed using a machine learning framework. Results show statistically significant predictive models (MAE of ±8.34 mm and R 2 = 0.92). The trained model was applied on 300 km of the Po River in Italy and allowed us to identify the gravel–sand transition occurring along this river length. Therefore, the approach presented here—based on freely available satellite data calibrated by low‐cost drone‐derived imagery—represents a promising step towards an automated surface mean grain size mapping over long river length, easily repeated through time for monitoring purposes." @default.
- W4225405144 created "2022-05-05" @default.
- W4225405144 creator A5012490625 @default.
- W4225405144 creator A5014305947 @default.
- W4225405144 creator A5032373497 @default.
- W4225405144 creator A5045981558 @default.
- W4225405144 creator A5058765329 @default.
- W4225405144 creator A5075641130 @default.
- W4225405144 date "2022-05-29" @default.
- W4225405144 modified "2023-10-12" @default.
- W4225405144 title "Mapping riverbed sediment size from Sentinel‐2 satellite data" @default.
- W4225405144 cites W1487673133 @default.
- W4225405144 cites W1509880555 @default.
- W4225405144 cites W1555985184 @default.
- W4225405144 cites W1575491588 @default.
- W4225405144 cites W1601607554 @default.
- W4225405144 cites W1694567288 @default.
- W4225405144 cites W1808104133 @default.
- W4225405144 cites W1895164393 @default.
- W4225405144 cites W1972951236 @default.
- W4225405144 cites W1980741511 @default.
- W4225405144 cites W1981769764 @default.
- W4225405144 cites W1984625928 @default.
- W4225405144 cites W1990469169 @default.
- W4225405144 cites W1991018729 @default.
- W4225405144 cites W1995194152 @default.
- W4225405144 cites W2001173963 @default.
- W4225405144 cites W2004529964 @default.
- W4225405144 cites W2015159529 @default.
- W4225405144 cites W2018711699 @default.
- W4225405144 cites W2035906824 @default.
- W4225405144 cites W2037980631 @default.
- W4225405144 cites W2056763422 @default.
- W4225405144 cites W2061105079 @default.
- W4225405144 cites W2062771303 @default.
- W4225405144 cites W2063276693 @default.
- W4225405144 cites W2072097742 @default.
- W4225405144 cites W2074819412 @default.
- W4225405144 cites W2082199675 @default.
- W4225405144 cites W2088799797 @default.
- W4225405144 cites W2090609684 @default.
- W4225405144 cites W2099356348 @default.
- W4225405144 cites W2099437773 @default.
- W4225405144 cites W2102384030 @default.
- W4225405144 cites W2105628787 @default.
- W4225405144 cites W2123631635 @default.
- W4225405144 cites W2128004000 @default.
- W4225405144 cites W2135015717 @default.
- W4225405144 cites W2141891739 @default.
- W4225405144 cites W2146016555 @default.
- W4225405144 cites W2151554882 @default.
- W4225405144 cites W2161277588 @default.
- W4225405144 cites W2198116561 @default.
- W4225405144 cites W2208592693 @default.
- W4225405144 cites W2234064036 @default.
- W4225405144 cites W2535869020 @default.
- W4225405144 cites W2560167313 @default.
- W4225405144 cites W2584799746 @default.
- W4225405144 cites W2767785952 @default.
- W4225405144 cites W2771208085 @default.
- W4225405144 cites W2809155968 @default.
- W4225405144 cites W2811310577 @default.
- W4225405144 cites W2885418899 @default.
- W4225405144 cites W2941045333 @default.
- W4225405144 cites W2962723135 @default.
- W4225405144 cites W2963803939 @default.
- W4225405144 cites W2981783575 @default.
- W4225405144 cites W2994806373 @default.
- W4225405144 cites W3022892815 @default.
- W4225405144 cites W3027233678 @default.
- W4225405144 cites W3042983905 @default.
- W4225405144 cites W3132411412 @default.
- W4225405144 cites W3134396324 @default.
- W4225405144 doi "https://doi.org/10.1002/esp.5394" @default.
- W4225405144 hasPublicationYear "2022" @default.
- W4225405144 type Work @default.
- W4225405144 citedByCount "6" @default.
- W4225405144 countsByYear W42254051442022 @default.
- W4225405144 countsByYear W42254051442023 @default.
- W4225405144 crossrefType "journal-article" @default.
- W4225405144 hasAuthorship W4225405144A5012490625 @default.
- W4225405144 hasAuthorship W4225405144A5014305947 @default.
- W4225405144 hasAuthorship W4225405144A5032373497 @default.
- W4225405144 hasAuthorship W4225405144A5045981558 @default.
- W4225405144 hasAuthorship W4225405144A5058765329 @default.
- W4225405144 hasAuthorship W4225405144A5075641130 @default.
- W4225405144 hasBestOaLocation W42254051443 @default.
- W4225405144 hasConcept C114793014 @default.
- W4225405144 hasConcept C115961682 @default.
- W4225405144 hasConcept C127313418 @default.
- W4225405144 hasConcept C127413603 @default.
- W4225405144 hasConcept C146849305 @default.
- W4225405144 hasConcept C146978453 @default.
- W4225405144 hasConcept C154945302 @default.
- W4225405144 hasConcept C160633673 @default.
- W4225405144 hasConcept C187320778 @default.
- W4225405144 hasConcept C192191005 @default.
- W4225405144 hasConcept C19269812 @default.