Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225412318> ?p ?o ?g. }
- W4225412318 endingPage "3495" @default.
- W4225412318 startingPage "3495" @default.
- W4225412318 abstract "Network slicing (NS) is an emerging technology in recent years, which enables network operators to slice network resources (e.g., bandwidth, power, spectrum, etc.) in different types of slices, so that it can adapt to different application scenarios of 5 g network: enhanced mobile broadband (eMBB), massive machine-type communications (mMTC) and ultra-reliable and low-latency communications (URLLC). In order to allocate these sliced network resources more effectively to users with different needs, it is important that manage the allocation of network resources. Actually, in the practical network resource allocation problem, the resources of the base station (BS) are limited and the demand of each user for mobile services is different. To better deal with the resource allocation problem, more effective methods and algorithms have emerged in recent years, such as the bidding method, deep learning (DL) algorithm, ant colony algorithm (AG), and wolf colony algorithm (WPA). This paper proposes a two tier slicing resource allocation algorithm based on Deep Reinforcement Learning (DRL) and joint bidding in wireless access networks. The wireless virtual technology divides mobile operators into infrastructure providers (InPs) and mobile virtual network operators (MVNOs). This paper considers a single base station, multi-user shared aggregated bandwidth radio access network scenario and joins the MVNOs to fully utilize base station resources, and divides the resource allocation process into two tiers. The algorithm proposed in this paper takes into account both the utilization of base station (BS) resources and the service demand of mobile users (MUs). In the upper tier, each MVNO is treated as an agent and uses a combination of bidding and Deep Q network (DQN) allows the MVNO to get more resources from the base station. In the lower tier allocation process, each MVNO distributes the received resources to the users who are connected to it, which also uses the Dueling DQN method for iterative learning to find the optimal solution to the problem. The results show that in the upper tier, the total system utility function and revenue obtained by the proposed algorithm are about 5.4% higher than double DQN and about 2.6% higher than Dueling DQN; In the lower tier, the user service quality obtained by using the proposed algorithm is more stable, the system utility function and Se are about 0.5-2.7% higher than DQN and Double DQN, but the convergence is faster." @default.
- W4225412318 created "2022-05-05" @default.
- W4225412318 creator A5003178957 @default.
- W4225412318 creator A5030498139 @default.
- W4225412318 creator A5073568638 @default.
- W4225412318 creator A5075489680 @default.
- W4225412318 date "2022-05-04" @default.
- W4225412318 modified "2023-10-18" @default.
- W4225412318 title "Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks" @default.
- W4225412318 cites W1997831264 @default.
- W4225412318 cites W2076335243 @default.
- W4225412318 cites W2083561767 @default.
- W4225412318 cites W2271266360 @default.
- W4225412318 cites W2597003067 @default.
- W4225412318 cites W2604174486 @default.
- W4225412318 cites W2612074600 @default.
- W4225412318 cites W2754368137 @default.
- W4225412318 cites W2783987282 @default.
- W4225412318 cites W2786932819 @default.
- W4225412318 cites W2793519446 @default.
- W4225412318 cites W2801412442 @default.
- W4225412318 cites W2805173205 @default.
- W4225412318 cites W2887019724 @default.
- W4225412318 cites W2900804979 @default.
- W4225412318 cites W2952685986 @default.
- W4225412318 cites W2954207442 @default.
- W4225412318 cites W2964112281 @default.
- W4225412318 cites W2968782695 @default.
- W4225412318 cites W2969525674 @default.
- W4225412318 cites W2990895887 @default.
- W4225412318 cites W3002189898 @default.
- W4225412318 cites W3005801438 @default.
- W4225412318 cites W3006431373 @default.
- W4225412318 cites W3012048304 @default.
- W4225412318 cites W3025361829 @default.
- W4225412318 cites W3080082685 @default.
- W4225412318 cites W3112680140 @default.
- W4225412318 cites W3112983622 @default.
- W4225412318 cites W3176485024 @default.
- W4225412318 cites W3199054470 @default.
- W4225412318 cites W3208830075 @default.
- W4225412318 cites W4206111555 @default.
- W4225412318 cites W4214904220 @default.
- W4225412318 cites W4223968569 @default.
- W4225412318 cites W4224303892 @default.
- W4225412318 doi "https://doi.org/10.3390/s22093495" @default.
- W4225412318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35591186" @default.
- W4225412318 hasPublicationYear "2022" @default.
- W4225412318 type Work @default.
- W4225412318 citedByCount "5" @default.
- W4225412318 countsByYear W42254123182022 @default.
- W4225412318 countsByYear W42254123182023 @default.
- W4225412318 crossrefType "journal-article" @default.
- W4225412318 hasAuthorship W4225412318A5003178957 @default.
- W4225412318 hasAuthorship W4225412318A5030498139 @default.
- W4225412318 hasAuthorship W4225412318A5073568638 @default.
- W4225412318 hasAuthorship W4225412318A5075489680 @default.
- W4225412318 hasBestOaLocation W42254123181 @default.
- W4225412318 hasConcept C106365562 @default.
- W4225412318 hasConcept C108037233 @default.
- W4225412318 hasConcept C120314980 @default.
- W4225412318 hasConcept C144133560 @default.
- W4225412318 hasConcept C153646914 @default.
- W4225412318 hasConcept C162853370 @default.
- W4225412318 hasConcept C207029474 @default.
- W4225412318 hasConcept C29202148 @default.
- W4225412318 hasConcept C31258907 @default.
- W4225412318 hasConcept C41008148 @default.
- W4225412318 hasConcept C555944384 @default.
- W4225412318 hasConcept C68649174 @default.
- W4225412318 hasConcept C76155785 @default.
- W4225412318 hasConcept C9233905 @default.
- W4225412318 hasConceptScore W4225412318C106365562 @default.
- W4225412318 hasConceptScore W4225412318C108037233 @default.
- W4225412318 hasConceptScore W4225412318C120314980 @default.
- W4225412318 hasConceptScore W4225412318C144133560 @default.
- W4225412318 hasConceptScore W4225412318C153646914 @default.
- W4225412318 hasConceptScore W4225412318C162853370 @default.
- W4225412318 hasConceptScore W4225412318C207029474 @default.
- W4225412318 hasConceptScore W4225412318C29202148 @default.
- W4225412318 hasConceptScore W4225412318C31258907 @default.
- W4225412318 hasConceptScore W4225412318C41008148 @default.
- W4225412318 hasConceptScore W4225412318C555944384 @default.
- W4225412318 hasConceptScore W4225412318C68649174 @default.
- W4225412318 hasConceptScore W4225412318C76155785 @default.
- W4225412318 hasConceptScore W4225412318C9233905 @default.
- W4225412318 hasFunder F4320321001 @default.
- W4225412318 hasIssue "9" @default.
- W4225412318 hasLocation W42254123181 @default.
- W4225412318 hasLocation W42254123182 @default.
- W4225412318 hasLocation W42254123183 @default.
- W4225412318 hasLocation W42254123184 @default.
- W4225412318 hasOpenAccess W4225412318 @default.
- W4225412318 hasPrimaryLocation W42254123181 @default.
- W4225412318 hasRelatedWork W2043937055 @default.
- W4225412318 hasRelatedWork W2119860474 @default.
- W4225412318 hasRelatedWork W2119995413 @default.
- W4225412318 hasRelatedWork W2129068897 @default.