Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225424155> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4225424155 abstract "In today's world, stress has become a prominent cause for many ailments. Automatic detection of stress from speech using state-of-the-art machine learning algorithms can facilitate early detection and prevention of stress. Artificial intelligence agents involved in affective computing and human-machine spoken interaction (HMI) might benefit from the capacity to identify human stress automatically. Despite the fact that several different methods have been established for stress detection, it is still unclear which auditory features should be considered for training a deep neural network (DNN) model. In this study, we propose to investigate the performance of traditional and modern auditory features for stress classification using the StressDat database. The StressDat database is a collection of acted speech recordings in Slovak realizing sentences within stress-prone situations in three different levels of stress. The per-formance of traditional auditory features such as Mel-Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP) are compared with modern auditory non-semantic speech representation such as x-vectors and TRIpLet Loss network (TRILL) vectors. As a benchmark, Low-level descriptors (LLD) auditory features are extracted using the OpenSMILE toolkit. We evaluated performance of four different automatic classification algorithms: support vector machine (SVM), multilayer perceptron (MLP), convolutional neural network (CNN), and long short-term memory (LSTM). The results reveal that TRILL vectors trained on CNN provide the highest accuracy (81.86 %)." @default.
- W4225424155 created "2022-05-05" @default.
- W4225424155 creator A5023471253 @default.
- W4225424155 creator A5057480095 @default.
- W4225424155 creator A5079036801 @default.
- W4225424155 date "2022-04-21" @default.
- W4225424155 modified "2023-10-18" @default.
- W4225424155 title "Stress detection using non-semantic speech representation" @default.
- W4225424155 cites W1979757145 @default.
- W4225424155 cites W2045014868 @default.
- W4225424155 cites W2085662862 @default.
- W4225424155 cites W2239141610 @default.
- W4225424155 cites W2327037637 @default.
- W4225424155 cites W2327530675 @default.
- W4225424155 cites W2593216954 @default.
- W4225424155 cites W2748488820 @default.
- W4225424155 cites W2895937007 @default.
- W4225424155 cites W2906022303 @default.
- W4225424155 cites W2982999850 @default.
- W4225424155 cites W3006926732 @default.
- W4225424155 cites W4205263511 @default.
- W4225424155 doi "https://doi.org/10.1109/radioelektronika54537.2022.9764916" @default.
- W4225424155 hasPublicationYear "2022" @default.
- W4225424155 type Work @default.
- W4225424155 citedByCount "2" @default.
- W4225424155 countsByYear W42254241552023 @default.
- W4225424155 crossrefType "proceedings-article" @default.
- W4225424155 hasAuthorship W4225424155A5023471253 @default.
- W4225424155 hasAuthorship W4225424155A5057480095 @default.
- W4225424155 hasAuthorship W4225424155A5079036801 @default.
- W4225424155 hasConcept C119857082 @default.
- W4225424155 hasConcept C12267149 @default.
- W4225424155 hasConcept C13280743 @default.
- W4225424155 hasConcept C138885662 @default.
- W4225424155 hasConcept C151989614 @default.
- W4225424155 hasConcept C153180895 @default.
- W4225424155 hasConcept C154945302 @default.
- W4225424155 hasConcept C185798385 @default.
- W4225424155 hasConcept C205649164 @default.
- W4225424155 hasConcept C21036866 @default.
- W4225424155 hasConcept C28490314 @default.
- W4225424155 hasConcept C41008148 @default.
- W4225424155 hasConcept C41895202 @default.
- W4225424155 hasConcept C50644808 @default.
- W4225424155 hasConcept C52622490 @default.
- W4225424155 hasConcept C60908668 @default.
- W4225424155 hasConcept C81363708 @default.
- W4225424155 hasConceptScore W4225424155C119857082 @default.
- W4225424155 hasConceptScore W4225424155C12267149 @default.
- W4225424155 hasConceptScore W4225424155C13280743 @default.
- W4225424155 hasConceptScore W4225424155C138885662 @default.
- W4225424155 hasConceptScore W4225424155C151989614 @default.
- W4225424155 hasConceptScore W4225424155C153180895 @default.
- W4225424155 hasConceptScore W4225424155C154945302 @default.
- W4225424155 hasConceptScore W4225424155C185798385 @default.
- W4225424155 hasConceptScore W4225424155C205649164 @default.
- W4225424155 hasConceptScore W4225424155C21036866 @default.
- W4225424155 hasConceptScore W4225424155C28490314 @default.
- W4225424155 hasConceptScore W4225424155C41008148 @default.
- W4225424155 hasConceptScore W4225424155C41895202 @default.
- W4225424155 hasConceptScore W4225424155C50644808 @default.
- W4225424155 hasConceptScore W4225424155C52622490 @default.
- W4225424155 hasConceptScore W4225424155C60908668 @default.
- W4225424155 hasConceptScore W4225424155C81363708 @default.
- W4225424155 hasFunder F4320332999 @default.
- W4225424155 hasLocation W42254241551 @default.
- W4225424155 hasOpenAccess W4225424155 @default.
- W4225424155 hasPrimaryLocation W42254241551 @default.
- W4225424155 hasRelatedWork W2019475500 @default.
- W4225424155 hasRelatedWork W2138847091 @default.
- W4225424155 hasRelatedWork W2144773493 @default.
- W4225424155 hasRelatedWork W2349769824 @default.
- W4225424155 hasRelatedWork W2422472940 @default.
- W4225424155 hasRelatedWork W2548162870 @default.
- W4225424155 hasRelatedWork W2548511587 @default.
- W4225424155 hasRelatedWork W2786428026 @default.
- W4225424155 hasRelatedWork W4293232884 @default.
- W4225424155 hasRelatedWork W4317383455 @default.
- W4225424155 isParatext "false" @default.
- W4225424155 isRetracted "false" @default.
- W4225424155 workType "article" @default.