Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225458766> ?p ?o ?g. }
- W4225458766 endingPage "1937" @default.
- W4225458766 startingPage "1925" @default.
- W4225458766 abstract "Magnetic Resonance Imaging (MRI) has been proven to be an efficient way to diagnose Alzheimer's disease (AD). Recent dramatic progress on deep learning greatly promotes the MRI analysis based on data-driven CNN methods using a large-scale longitudinal MRI dataset. However, most of the existing MRI datasets are fragmented due to unexpected quits of volunteers. To tackle this problem, we propose a novel Temporal Recurrent Generative Adversarial Network (TR-GAN) to complete missing sessions of MRI datasets. Unlike existing GAN-based methods, which either fail to generate future sessions or only generate fixed-length sessions, TR-GAN takes all past sessions to recurrently and smoothly generate future ones with variant length. Specifically, TR-GAN adopts recurrent connection to deal with variant input sequence length and flexibly generate future variant sessions. Besides, we also design a multiple scale & location (MSL) module and a SWAP module to encourage the model to better focus on detailed information, which helps to generate high-quality MRI data. Compared with other popular GAN architectures, TR-GAN achieved the best performance in all evaluation metrics of two datasets. After expanding the Whole MRI dataset, the balanced accuracy of AD vs. cognitively normal (CN) vs. mild cognitive impairment (MCI) and stable MCI vs. progressive MCI classification can be increased by 3.61% and 4.00%, respectively." @default.
- W4225458766 created "2022-05-05" @default.
- W4225458766 creator A5004519375 @default.
- W4225458766 creator A5024031100 @default.
- W4225458766 creator A5029237663 @default.
- W4225458766 creator A5038613343 @default.
- W4225458766 creator A5049939779 @default.
- W4225458766 creator A5058662281 @default.
- W4225458766 creator A5065679716 @default.
- W4225458766 creator A5068274975 @default.
- W4225458766 creator A5068915028 @default.
- W4225458766 creator A5069765960 @default.
- W4225458766 date "2022-08-01" @default.
- W4225458766 modified "2023-10-17" @default.
- W4225458766 title "TR-GAN: Multi-Session Future MRI Prediction With Temporal Recurrent Generative Adversarial Network" @default.
- W4225458766 cites W1498436455 @default.
- W4225458766 cites W1580389772 @default.
- W4225458766 cites W1857124936 @default.
- W4225458766 cites W1970928383 @default.
- W4225458766 cites W2005133023 @default.
- W4225458766 cites W2019836674 @default.
- W4225458766 cites W2020745232 @default.
- W4225458766 cites W2025009638 @default.
- W4225458766 cites W2046189693 @default.
- W4225458766 cites W2058046532 @default.
- W4225458766 cites W2064675550 @default.
- W4225458766 cites W2078524519 @default.
- W4225458766 cites W2092789470 @default.
- W4225458766 cites W2101807845 @default.
- W4225458766 cites W2117340355 @default.
- W4225458766 cites W2120111102 @default.
- W4225458766 cites W2157331557 @default.
- W4225458766 cites W2603777577 @default.
- W4225458766 cites W2757201831 @default.
- W4225458766 cites W2765268259 @default.
- W4225458766 cites W2795552972 @default.
- W4225458766 cites W2795824182 @default.
- W4225458766 cites W2806118840 @default.
- W4225458766 cites W2890139949 @default.
- W4225458766 cites W2909627766 @default.
- W4225458766 cites W2923549568 @default.
- W4225458766 cites W2961018736 @default.
- W4225458766 cites W2962793481 @default.
- W4225458766 cites W2962932373 @default.
- W4225458766 cites W2962974533 @default.
- W4225458766 cites W2963073614 @default.
- W4225458766 cites W2963767194 @default.
- W4225458766 cites W2982412091 @default.
- W4225458766 cites W2982587597 @default.
- W4225458766 cites W3022315685 @default.
- W4225458766 cites W3088994923 @default.
- W4225458766 cites W3090127259 @default.
- W4225458766 cites W3096622823 @default.
- W4225458766 cites W3163616589 @default.
- W4225458766 cites W4230920194 @default.
- W4225458766 doi "https://doi.org/10.1109/tmi.2022.3151118" @default.
- W4225458766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35148262" @default.
- W4225458766 hasPublicationYear "2022" @default.
- W4225458766 type Work @default.
- W4225458766 citedByCount "2" @default.
- W4225458766 countsByYear W42254587662022 @default.
- W4225458766 countsByYear W42254587662023 @default.
- W4225458766 crossrefType "journal-article" @default.
- W4225458766 hasAuthorship W4225458766A5004519375 @default.
- W4225458766 hasAuthorship W4225458766A5024031100 @default.
- W4225458766 hasAuthorship W4225458766A5029237663 @default.
- W4225458766 hasAuthorship W4225458766A5038613343 @default.
- W4225458766 hasAuthorship W4225458766A5049939779 @default.
- W4225458766 hasAuthorship W4225458766A5058662281 @default.
- W4225458766 hasAuthorship W4225458766A5065679716 @default.
- W4225458766 hasAuthorship W4225458766A5068274975 @default.
- W4225458766 hasAuthorship W4225458766A5068915028 @default.
- W4225458766 hasAuthorship W4225458766A5069765960 @default.
- W4225458766 hasConcept C10138342 @default.
- W4225458766 hasConcept C108583219 @default.
- W4225458766 hasConcept C119857082 @default.
- W4225458766 hasConcept C126838900 @default.
- W4225458766 hasConcept C136764020 @default.
- W4225458766 hasConcept C143409427 @default.
- W4225458766 hasConcept C153180895 @default.
- W4225458766 hasConcept C154945302 @default.
- W4225458766 hasConcept C162324750 @default.
- W4225458766 hasConcept C2779182362 @default.
- W4225458766 hasConcept C2988773926 @default.
- W4225458766 hasConcept C41008148 @default.
- W4225458766 hasConcept C71924100 @default.
- W4225458766 hasConcept C99821215 @default.
- W4225458766 hasConceptScore W4225458766C10138342 @default.
- W4225458766 hasConceptScore W4225458766C108583219 @default.
- W4225458766 hasConceptScore W4225458766C119857082 @default.
- W4225458766 hasConceptScore W4225458766C126838900 @default.
- W4225458766 hasConceptScore W4225458766C136764020 @default.
- W4225458766 hasConceptScore W4225458766C143409427 @default.
- W4225458766 hasConceptScore W4225458766C153180895 @default.
- W4225458766 hasConceptScore W4225458766C154945302 @default.
- W4225458766 hasConceptScore W4225458766C162324750 @default.
- W4225458766 hasConceptScore W4225458766C2779182362 @default.
- W4225458766 hasConceptScore W4225458766C2988773926 @default.