Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225463090> ?p ?o ?g. }
- W4225463090 endingPage "50676" @default.
- W4225463090 startingPage "50662" @default.
- W4225463090 abstract "Ultra-reliable and Low-latency Communications (URLLC) is expected to be one of the most critical characteristics Beyond fifth-Generation (B5G) cellular networks with stringent low latency and high-reliability requirements. The Deep Reinforcement Learning (deep-RL) framework has been applied to predict the optimization of a Resource Block (RB) and minimize Power Allocation (PA) to guarantee a high End-to-End (E2E) reliability and low E2E latency under rate constraints. This paper proposes a novel Policy Gradient-based Actor-Critic Learning (PGACL) algorithm to optimize the policy gradient for optimal rate allocation to solve the RB, minimize power, and guarantee a solution for URLLC scheduling. The purpose of a PGACL algorithm is to provide a good policy with a closer convergence rate and a low computational cost depending on the reduced action space for every user. URLLC systems need to operate in highly reliable systems and account for extreme network conditions. Therefore, we proposed the refiner Generative Adversarial Networks (GANs) that apply enough extreme events for the deep-RL agent to generate synthetic data with high reliability similar to real data based on the regulated number of extreme events in the dataset. This refiner GAN method enables a deep-RL approach to generate large amounts of data practically used in real-time operations. Simulation results showed that the proposed deep-RL for refiner-GAN can omit the transient training time and develop deep learning based on a controlled set of unlabeled real traffic at a relatively short time. Furthermore, the refiner GAN demonstrated 99.9999% reliability and E2E latency of less than 1.4ms." @default.
- W4225463090 created "2022-05-05" @default.
- W4225463090 creator A5011625447 @default.
- W4225463090 creator A5012786887 @default.
- W4225463090 creator A5014834110 @default.
- W4225463090 creator A5016097715 @default.
- W4225463090 creator A5039678928 @default.
- W4225463090 creator A5042702804 @default.
- W4225463090 creator A5066783464 @default.
- W4225463090 creator A5081140044 @default.
- W4225463090 date "2022-01-01" @default.
- W4225463090 modified "2023-10-14" @default.
- W4225463090 title "Refiner GAN Algorithmically Enabled Deep-RL for Guaranteed Traffic Packets in Real-Time URLLC B5G Communication Systems" @default.
- W4225463090 cites W139596442 @default.
- W4225463090 cites W2009033028 @default.
- W4225463090 cites W2036533317 @default.
- W4225463090 cites W2106864314 @default.
- W4225463090 cites W2124982716 @default.
- W4225463090 cites W2169982856 @default.
- W4225463090 cites W2293740706 @default.
- W4225463090 cites W2748182655 @default.
- W4225463090 cites W2761694337 @default.
- W4225463090 cites W2808381205 @default.
- W4225463090 cites W2895615608 @default.
- W4225463090 cites W2900655085 @default.
- W4225463090 cites W2904729448 @default.
- W4225463090 cites W2907063143 @default.
- W4225463090 cites W2908464576 @default.
- W4225463090 cites W2914785290 @default.
- W4225463090 cites W2962215461 @default.
- W4225463090 cites W2962908937 @default.
- W4225463090 cites W2963000651 @default.
- W4225463090 cites W2963709863 @default.
- W4225463090 cites W2964060933 @default.
- W4225463090 cites W2968764495 @default.
- W4225463090 cites W3002189898 @default.
- W4225463090 cites W3008402949 @default.
- W4225463090 cites W3033821423 @default.
- W4225463090 cites W3093951152 @default.
- W4225463090 cites W3096831136 @default.
- W4225463090 cites W3105420554 @default.
- W4225463090 cites W3107212184 @default.
- W4225463090 cites W3112324757 @default.
- W4225463090 cites W3112739849 @default.
- W4225463090 cites W3119941528 @default.
- W4225463090 cites W3130344071 @default.
- W4225463090 cites W3134502172 @default.
- W4225463090 cites W3142457648 @default.
- W4225463090 cites W3179018212 @default.
- W4225463090 doi "https://doi.org/10.1109/access.2022.3170447" @default.
- W4225463090 hasPublicationYear "2022" @default.
- W4225463090 type Work @default.
- W4225463090 citedByCount "15" @default.
- W4225463090 countsByYear W42254630902022 @default.
- W4225463090 countsByYear W42254630902023 @default.
- W4225463090 crossrefType "journal-article" @default.
- W4225463090 hasAuthorship W4225463090A5011625447 @default.
- W4225463090 hasAuthorship W4225463090A5012786887 @default.
- W4225463090 hasAuthorship W4225463090A5014834110 @default.
- W4225463090 hasAuthorship W4225463090A5016097715 @default.
- W4225463090 hasAuthorship W4225463090A5039678928 @default.
- W4225463090 hasAuthorship W4225463090A5042702804 @default.
- W4225463090 hasAuthorship W4225463090A5066783464 @default.
- W4225463090 hasAuthorship W4225463090A5081140044 @default.
- W4225463090 hasBestOaLocation W42254630901 @default.
- W4225463090 hasConcept C108583219 @default.
- W4225463090 hasConcept C120314980 @default.
- W4225463090 hasConcept C121332964 @default.
- W4225463090 hasConcept C126255220 @default.
- W4225463090 hasConcept C154945302 @default.
- W4225463090 hasConcept C158379750 @default.
- W4225463090 hasConcept C163258240 @default.
- W4225463090 hasConcept C206729178 @default.
- W4225463090 hasConcept C31258907 @default.
- W4225463090 hasConcept C33923547 @default.
- W4225463090 hasConcept C41008148 @default.
- W4225463090 hasConcept C43214815 @default.
- W4225463090 hasConcept C62520636 @default.
- W4225463090 hasConcept C76155785 @default.
- W4225463090 hasConcept C79403827 @default.
- W4225463090 hasConcept C82876162 @default.
- W4225463090 hasConcept C97541855 @default.
- W4225463090 hasConceptScore W4225463090C108583219 @default.
- W4225463090 hasConceptScore W4225463090C120314980 @default.
- W4225463090 hasConceptScore W4225463090C121332964 @default.
- W4225463090 hasConceptScore W4225463090C126255220 @default.
- W4225463090 hasConceptScore W4225463090C154945302 @default.
- W4225463090 hasConceptScore W4225463090C158379750 @default.
- W4225463090 hasConceptScore W4225463090C163258240 @default.
- W4225463090 hasConceptScore W4225463090C206729178 @default.
- W4225463090 hasConceptScore W4225463090C31258907 @default.
- W4225463090 hasConceptScore W4225463090C33923547 @default.
- W4225463090 hasConceptScore W4225463090C41008148 @default.
- W4225463090 hasConceptScore W4225463090C43214815 @default.
- W4225463090 hasConceptScore W4225463090C62520636 @default.
- W4225463090 hasConceptScore W4225463090C76155785 @default.
- W4225463090 hasConceptScore W4225463090C79403827 @default.
- W4225463090 hasConceptScore W4225463090C82876162 @default.