Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225501695> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4225501695 endingPage "10" @default.
- W4225501695 startingPage "1" @default.
- W4225501695 abstract "Undirected graphs are frequently used to model phenomena that deal with interacting objects, such as social networks, brain activity and communication networks. The topology of an undirected graph G can be captured by an adjacency matrix; this matrix in turn can be visualized directly to give insight into the graph structure. Which visual patterns appear in such a matrix visualization crucially depends on the ordering of its rows and columns. Formally defining the quality of an ordering and then automatically computing a high-quality ordering are both challenging problems; however, effective heuristics exist and are used in practice. Often, graphs do not exist in isolation but as part of a collection of graphs on the same set of vertices, for example, brain scans over time or of different people. To visualize such graph collections, we need a single ordering that works well for all matrices simultaneously. The current state-of-the-art solves this problem by taking a (weighted) union over all graphs and applying existing heuristics. However, this union leads to a loss of information, specifically in those parts of the graphs which are different. We propose a collection-aware approach to avoid this loss of information and apply it to two popular heuristic methods: leaf order and barycenter.The de-facto standard computational quality metrics for matrix ordering capture only block-diagonal patterns (cliques). Instead, we propose to use Moran's I, a spatial auto-correlation metric, which captures the full range of established patterns. Moran's I refines previously proposed stress measures. Furthermore, the popular leaf order method heuristically optimizes a similar measure which further supports the use of Moran's I in this context. An ordering that maximizes Moran's I can be computed via solutions to the Traveling Salesperson Problem (TSP); orderings that approximate the optimal ordering can be computed more efficiently, using any of the approximation algorithms for metric TSP. We evaluated our methods for simultaneous orderings on real-world datasets using Moran's I as the quality metric. Our results show that our collection-aware approach matches or improves performance compared to the union approach, depending on the similarity of the graphs in the collection. Specifically, our Moran's I-based collection-aware leaf order implementation consistently outperforms other implementations. Our collection-aware implementations carry no significant additional computational costs." @default.
- W4225501695 created "2022-05-05" @default.
- W4225501695 creator A5000420564 @default.
- W4225501695 creator A5001631084 @default.
- W4225501695 creator A5062614232 @default.
- W4225501695 date "2022-01-01" @default.
- W4225501695 modified "2023-10-17" @default.
- W4225501695 title "Simultaneous Matrix Orderings for Graph Collections" @default.
- W4225501695 cites W1483285511 @default.
- W4225501695 cites W1972151695 @default.
- W4225501695 cites W1997522225 @default.
- W4225501695 cites W2014945905 @default.
- W4225501695 cites W2032543589 @default.
- W4225501695 cites W2033330193 @default.
- W4225501695 cites W2037394096 @default.
- W4225501695 cites W2039163945 @default.
- W4225501695 cites W2045884213 @default.
- W4225501695 cites W2052209137 @default.
- W4225501695 cites W2052611179 @default.
- W4225501695 cites W2054630393 @default.
- W4225501695 cites W2071892440 @default.
- W4225501695 cites W2106378689 @default.
- W4225501695 cites W2119430004 @default.
- W4225501695 cites W2125115238 @default.
- W4225501695 cites W2126536832 @default.
- W4225501695 cites W2143326696 @default.
- W4225501695 cites W2149349114 @default.
- W4225501695 cites W2161307069 @default.
- W4225501695 cites W2166660524 @default.
- W4225501695 cites W2287322623 @default.
- W4225501695 cites W2412593044 @default.
- W4225501695 cites W2485962973 @default.
- W4225501695 cites W2514496145 @default.
- W4225501695 cites W2528997906 @default.
- W4225501695 cites W2815307792 @default.
- W4225501695 cites W3095931372 @default.
- W4225501695 cites W3149637534 @default.
- W4225501695 doi "https://doi.org/10.1109/tvcg.2021.3114773" @default.
- W4225501695 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34587024" @default.
- W4225501695 hasPublicationYear "2022" @default.
- W4225501695 type Work @default.
- W4225501695 citedByCount "5" @default.
- W4225501695 countsByYear W42255016952022 @default.
- W4225501695 countsByYear W42255016952023 @default.
- W4225501695 crossrefType "journal-article" @default.
- W4225501695 hasAuthorship W4225501695A5000420564 @default.
- W4225501695 hasAuthorship W4225501695A5001631084 @default.
- W4225501695 hasAuthorship W4225501695A5062614232 @default.
- W4225501695 hasBestOaLocation W42255016952 @default.
- W4225501695 hasConcept C106487976 @default.
- W4225501695 hasConcept C111919701 @default.
- W4225501695 hasConcept C112953755 @default.
- W4225501695 hasConcept C11413529 @default.
- W4225501695 hasConcept C127705205 @default.
- W4225501695 hasConcept C132525143 @default.
- W4225501695 hasConcept C154945302 @default.
- W4225501695 hasConcept C159985019 @default.
- W4225501695 hasConcept C180356752 @default.
- W4225501695 hasConcept C192562407 @default.
- W4225501695 hasConcept C36464697 @default.
- W4225501695 hasConcept C41008148 @default.
- W4225501695 hasConcept C80444323 @default.
- W4225501695 hasConceptScore W4225501695C106487976 @default.
- W4225501695 hasConceptScore W4225501695C111919701 @default.
- W4225501695 hasConceptScore W4225501695C112953755 @default.
- W4225501695 hasConceptScore W4225501695C11413529 @default.
- W4225501695 hasConceptScore W4225501695C127705205 @default.
- W4225501695 hasConceptScore W4225501695C132525143 @default.
- W4225501695 hasConceptScore W4225501695C154945302 @default.
- W4225501695 hasConceptScore W4225501695C159985019 @default.
- W4225501695 hasConceptScore W4225501695C180356752 @default.
- W4225501695 hasConceptScore W4225501695C192562407 @default.
- W4225501695 hasConceptScore W4225501695C36464697 @default.
- W4225501695 hasConceptScore W4225501695C41008148 @default.
- W4225501695 hasConceptScore W4225501695C80444323 @default.
- W4225501695 hasIssue "1" @default.
- W4225501695 hasLocation W42255016951 @default.
- W4225501695 hasLocation W42255016952 @default.
- W4225501695 hasLocation W42255016953 @default.
- W4225501695 hasOpenAccess W4225501695 @default.
- W4225501695 hasPrimaryLocation W42255016951 @default.
- W4225501695 hasRelatedWork W1912392752 @default.
- W4225501695 hasRelatedWork W2074815895 @default.
- W4225501695 hasRelatedWork W2161843546 @default.
- W4225501695 hasRelatedWork W2346931493 @default.
- W4225501695 hasRelatedWork W2377311228 @default.
- W4225501695 hasRelatedWork W2525150146 @default.
- W4225501695 hasRelatedWork W4252691376 @default.
- W4225501695 hasRelatedWork W4253094571 @default.
- W4225501695 hasRelatedWork W4280650056 @default.
- W4225501695 hasRelatedWork W4301605664 @default.
- W4225501695 hasVolume "28" @default.
- W4225501695 isParatext "false" @default.
- W4225501695 isRetracted "false" @default.
- W4225501695 workType "article" @default.