Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225501970> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4225501970 endingPage "2343" @default.
- W4225501970 startingPage "2330" @default.
- W4225501970 abstract "We consider the problem of learning a sparse rule model, a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyper-rectangle in the input space. Since the number of all possible such rules is extremely large, it has been computationally intractable to select the optimal set of active rules. In this paper, to solve this difficulty for learning the optimal sparse rule model, we propose Safe RuleFit (SRF). Our basic idea is to develop meta safe screening (mSS), which is a non-trivial extension of well-known safe screening (SS) techniques. While SS is used for screening out one feature, mSS can be used for screening out multiple features by exploiting the inclusion-relations of hyper-rectangles in the input space. SRF provides a general framework for fitting sparse rule models for regression and classification, and it can be extended to handle more general sparse regularizations such as group regularization. We demonstrate the advantages of SRF through intensive numerical experiments." @default.
- W4225501970 created "2022-05-05" @default.
- W4225501970 creator A5017976239 @default.
- W4225501970 creator A5054999797 @default.
- W4225501970 creator A5081482638 @default.
- W4225501970 date "2023-02-01" @default.
- W4225501970 modified "2023-10-01" @default.
- W4225501970 title "Safe RuleFit: Learning Optimal Sparse Rule Model by Meta Safe Screening" @default.
- W4225501970 cites W1987371344 @default.
- W4225501970 cites W2039050532 @default.
- W4225501970 cites W2048231652 @default.
- W4225501970 cites W2066771339 @default.
- W4225501970 cites W2118022153 @default.
- W4225501970 cites W2135046866 @default.
- W4225501970 cites W2233387570 @default.
- W4225501970 cites W2273934194 @default.
- W4225501970 cites W2911964244 @default.
- W4225501970 cites W2964303497 @default.
- W4225501970 cites W3150565720 @default.
- W4225501970 cites W4205213118 @default.
- W4225501970 cites W4249667877 @default.
- W4225501970 doi "https://doi.org/10.1109/tpami.2022.3167993" @default.
- W4225501970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35471868" @default.
- W4225501970 hasPublicationYear "2023" @default.
- W4225501970 type Work @default.
- W4225501970 citedByCount "2" @default.
- W4225501970 countsByYear W42255019702023 @default.
- W4225501970 crossrefType "journal-article" @default.
- W4225501970 hasAuthorship W4225501970A5017976239 @default.
- W4225501970 hasAuthorship W4225501970A5054999797 @default.
- W4225501970 hasAuthorship W4225501970A5081482638 @default.
- W4225501970 hasConcept C11413529 @default.
- W4225501970 hasConcept C119857082 @default.
- W4225501970 hasConcept C124066611 @default.
- W4225501970 hasConcept C126255220 @default.
- W4225501970 hasConcept C153180895 @default.
- W4225501970 hasConcept C154945302 @default.
- W4225501970 hasConcept C162324750 @default.
- W4225501970 hasConcept C177264268 @default.
- W4225501970 hasConcept C187736073 @default.
- W4225501970 hasConcept C199360897 @default.
- W4225501970 hasConcept C2524010 @default.
- W4225501970 hasConcept C2776135515 @default.
- W4225501970 hasConcept C2780451532 @default.
- W4225501970 hasConcept C2781002164 @default.
- W4225501970 hasConcept C2781302577 @default.
- W4225501970 hasConcept C33923547 @default.
- W4225501970 hasConcept C41008148 @default.
- W4225501970 hasConceptScore W4225501970C11413529 @default.
- W4225501970 hasConceptScore W4225501970C119857082 @default.
- W4225501970 hasConceptScore W4225501970C124066611 @default.
- W4225501970 hasConceptScore W4225501970C126255220 @default.
- W4225501970 hasConceptScore W4225501970C153180895 @default.
- W4225501970 hasConceptScore W4225501970C154945302 @default.
- W4225501970 hasConceptScore W4225501970C162324750 @default.
- W4225501970 hasConceptScore W4225501970C177264268 @default.
- W4225501970 hasConceptScore W4225501970C187736073 @default.
- W4225501970 hasConceptScore W4225501970C199360897 @default.
- W4225501970 hasConceptScore W4225501970C2524010 @default.
- W4225501970 hasConceptScore W4225501970C2776135515 @default.
- W4225501970 hasConceptScore W4225501970C2780451532 @default.
- W4225501970 hasConceptScore W4225501970C2781002164 @default.
- W4225501970 hasConceptScore W4225501970C2781302577 @default.
- W4225501970 hasConceptScore W4225501970C33923547 @default.
- W4225501970 hasConceptScore W4225501970C41008148 @default.
- W4225501970 hasIssue "2" @default.
- W4225501970 hasLocation W42255019701 @default.
- W4225501970 hasLocation W42255019702 @default.
- W4225501970 hasOpenAccess W4225501970 @default.
- W4225501970 hasPrimaryLocation W42255019701 @default.
- W4225501970 hasRelatedWork W1945544474 @default.
- W4225501970 hasRelatedWork W1972656095 @default.
- W4225501970 hasRelatedWork W1973406954 @default.
- W4225501970 hasRelatedWork W1983610137 @default.
- W4225501970 hasRelatedWork W2115296911 @default.
- W4225501970 hasRelatedWork W2921182884 @default.
- W4225501970 hasRelatedWork W2990531703 @default.
- W4225501970 hasRelatedWork W3047965787 @default.
- W4225501970 hasRelatedWork W3199608561 @default.
- W4225501970 hasRelatedWork W4319309271 @default.
- W4225501970 hasVolume "45" @default.
- W4225501970 isParatext "false" @default.
- W4225501970 isRetracted "false" @default.
- W4225501970 workType "article" @default.