Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225507110> ?p ?o ?g. }
- W4225507110 endingPage "102431" @default.
- W4225507110 startingPage "102431" @default.
- W4225507110 abstract "Mapping the human connectome using fiber-tracking permits the study of brain connectivity and yields new insights into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging (dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the connectome/tractography clinical applications. Here we develop fiber orientation distribution (FOD) network (FOD-Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T scanner as well as with another public available multicenter-multiscanner dataset. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell low-angular-resolution dMRI data (e.g., 32 directions, b=1000s/mm2) to approximate the quality of FODs derived from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate tractography improvement, removing spurious connections and bridging missing connections. We further demonstrate that connectomes reconstructed by super-resolved FODs achieve comparable results to those obtained with more advanced dMRI acquisition protocols, on both HCP and clinical 3.0T data. Advances in deep-learning approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from existing clinical MRI environments. Our code is freely available at https://github.com/ruizengalways/FOD-Net." @default.
- W4225507110 created "2022-05-05" @default.
- W4225507110 creator A5021471823 @default.
- W4225507110 creator A5021875517 @default.
- W4225507110 creator A5042866937 @default.
- W4225507110 creator A5054919439 @default.
- W4225507110 creator A5071212566 @default.
- W4225507110 creator A5076914529 @default.
- W4225507110 creator A5083946982 @default.
- W4225507110 date "2022-07-01" @default.
- W4225507110 modified "2023-10-18" @default.
- W4225507110 title "FOD-Net: A deep learning method for fiber orientation distribution angular super resolution" @default.
- W4225507110 cites W1556167233 @default.
- W4225507110 cites W1965894642 @default.
- W4225507110 cites W1967159562 @default.
- W4225507110 cites W2001611992 @default.
- W4225507110 cites W2001617943 @default.
- W4225507110 cites W2010125850 @default.
- W4225507110 cites W2014022174 @default.
- W4225507110 cites W2024729467 @default.
- W4225507110 cites W2034252184 @default.
- W4225507110 cites W2056189002 @default.
- W4225507110 cites W2067214598 @default.
- W4225507110 cites W2080403608 @default.
- W4225507110 cites W2094435366 @default.
- W4225507110 cites W2101135654 @default.
- W4225507110 cites W2147133578 @default.
- W4225507110 cites W2165020904 @default.
- W4225507110 cites W2591999117 @default.
- W4225507110 cites W2754414859 @default.
- W4225507110 cites W2776959505 @default.
- W4225507110 cites W2803890652 @default.
- W4225507110 cites W2900936384 @default.
- W4225507110 cites W2904591139 @default.
- W4225507110 cites W2912944597 @default.
- W4225507110 cites W2941895184 @default.
- W4225507110 cites W2964017656 @default.
- W4225507110 cites W2970898057 @default.
- W4225507110 cites W2972180470 @default.
- W4225507110 cites W2973995848 @default.
- W4225507110 cites W3009979434 @default.
- W4225507110 cites W3019036807 @default.
- W4225507110 cites W3031827021 @default.
- W4225507110 cites W3033099853 @default.
- W4225507110 cites W3041559699 @default.
- W4225507110 cites W3041897589 @default.
- W4225507110 cites W3092596753 @default.
- W4225507110 cites W3185408546 @default.
- W4225507110 cites W795339718 @default.
- W4225507110 doi "https://doi.org/10.1016/j.media.2022.102431" @default.
- W4225507110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35397471" @default.
- W4225507110 hasPublicationYear "2022" @default.
- W4225507110 type Work @default.
- W4225507110 citedByCount "8" @default.
- W4225507110 countsByYear W42255071102022 @default.
- W4225507110 countsByYear W42255071102023 @default.
- W4225507110 crossrefType "journal-article" @default.
- W4225507110 hasAuthorship W4225507110A5021471823 @default.
- W4225507110 hasAuthorship W4225507110A5021875517 @default.
- W4225507110 hasAuthorship W4225507110A5042866937 @default.
- W4225507110 hasAuthorship W4225507110A5054919439 @default.
- W4225507110 hasAuthorship W4225507110A5071212566 @default.
- W4225507110 hasAuthorship W4225507110A5076914529 @default.
- W4225507110 hasAuthorship W4225507110A5083946982 @default.
- W4225507110 hasBestOaLocation W42255071102 @default.
- W4225507110 hasConcept C114614502 @default.
- W4225507110 hasConcept C126838900 @default.
- W4225507110 hasConcept C133848361 @default.
- W4225507110 hasConcept C143409427 @default.
- W4225507110 hasConcept C149550507 @default.
- W4225507110 hasConcept C153180895 @default.
- W4225507110 hasConcept C154945302 @default.
- W4225507110 hasConcept C16345878 @default.
- W4225507110 hasConcept C169760540 @default.
- W4225507110 hasConcept C2524010 @default.
- W4225507110 hasConcept C3018011982 @default.
- W4225507110 hasConcept C31972630 @default.
- W4225507110 hasConcept C33923547 @default.
- W4225507110 hasConcept C41008148 @default.
- W4225507110 hasConcept C45715564 @default.
- W4225507110 hasConcept C71924100 @default.
- W4225507110 hasConcept C84787856 @default.
- W4225507110 hasConcept C86803240 @default.
- W4225507110 hasConcept C97820695 @default.
- W4225507110 hasConceptScore W4225507110C114614502 @default.
- W4225507110 hasConceptScore W4225507110C126838900 @default.
- W4225507110 hasConceptScore W4225507110C133848361 @default.
- W4225507110 hasConceptScore W4225507110C143409427 @default.
- W4225507110 hasConceptScore W4225507110C149550507 @default.
- W4225507110 hasConceptScore W4225507110C153180895 @default.
- W4225507110 hasConceptScore W4225507110C154945302 @default.
- W4225507110 hasConceptScore W4225507110C16345878 @default.
- W4225507110 hasConceptScore W4225507110C169760540 @default.
- W4225507110 hasConceptScore W4225507110C2524010 @default.
- W4225507110 hasConceptScore W4225507110C3018011982 @default.
- W4225507110 hasConceptScore W4225507110C31972630 @default.
- W4225507110 hasConceptScore W4225507110C33923547 @default.
- W4225507110 hasConceptScore W4225507110C41008148 @default.