Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225508617> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4225508617 endingPage "117167" @default.
- W4225508617 startingPage "117167" @default.
- W4225508617 abstract "This paper describes our investigation to determine whether undesirable health conditions of an automobile driver can be identified in real time solely by monitoring and assessing his/her driving behavior. The concept has great potential to reduce the accident rate on roadways, especially for young inexperienced drivers who may be suffering from chronic health conditions that when uncontrolled, can result in dangerous driving actions. Our approach involves building models of “normal” and “abnormal” driving by an individual through machine learning from observation (MLfO, or simply LfO). Conceptually, discrepancies between actual driving actions taken by a driver in real time and the actions prescribed by a model of her/his normal driving, and/or similarities to a model of his/her abnormal driving, could indicate a dangerous medical condition. If appropriate, the system could alert the driver and/or the appropriate authorities (e.g., EMTs, police, or parents if a minor) of the potential for danger. More specifically, our research created models of human driving through the use of an LfO system developed previously in our laboratory called Force-feedback Approach to Learning from Coaching and Observation with Natural and Experiential Training (Falconet). Time-stamped traces of actions taken by 12 human test subjects in a driving simulator were collected and used to create the models of human driving behavior through Falconet. Then the overall actions prescribed by the models (called the agents) were compared to the original traces to ascertain whether similarities and/or differences between the human test subject behaviors and the agent behaviors could be indicative of the target conditions. In our use case presented here, the target condition was Attention Deficit/Hyperactivity Disorder (ADHD), a condition that afflicts many driving age teenagers and which can be detrimental to safe driving when not under control through medication. The work described in this paper is exploratory in nature, with the objective of showing scientific feasibility. The results of extensive testing indicate that the agents created with the Falconet system produced promising results, being able to correctly characterize traces in up to nearly 82% of the test cases presented. Nevertheless, as is typical in such exploratory works, we found that much further work remains to be done before this concept becomes ready for commercial application. In this paper we describe the approach taken, the agents created and the extensive quantitative experiments conducted, as well as any insights learned. Areas of further research are also identified and discussed." @default.
- W4225508617 created "2022-05-05" @default.
- W4225508617 creator A5001976537 @default.
- W4225508617 creator A5012886737 @default.
- W4225508617 creator A5013982994 @default.
- W4225508617 creator A5026216387 @default.
- W4225508617 creator A5030316532 @default.
- W4225508617 creator A5037787380 @default.
- W4225508617 creator A5038686010 @default.
- W4225508617 creator A5040845275 @default.
- W4225508617 creator A5046182165 @default.
- W4225508617 creator A5052604050 @default.
- W4225508617 creator A5085354226 @default.
- W4225508617 date "2022-08-01" @default.
- W4225508617 modified "2023-09-27" @default.
- W4225508617 title "Detection of driver health condition by monitoring driving behavior through machine learning from observation" @default.
- W4225508617 cites W1525696288 @default.
- W4225508617 cites W1787873135 @default.
- W4225508617 cites W1829073814 @default.
- W4225508617 cites W1967661515 @default.
- W4225508617 cites W1973441305 @default.
- W4225508617 cites W1973964380 @default.
- W4225508617 cites W1986014385 @default.
- W4225508617 cites W2007320090 @default.
- W4225508617 cites W2017247606 @default.
- W4225508617 cites W2025623975 @default.
- W4225508617 cites W2026579608 @default.
- W4225508617 cites W2029010975 @default.
- W4225508617 cites W2033502333 @default.
- W4225508617 cites W2078297485 @default.
- W4225508617 cites W2081982229 @default.
- W4225508617 cites W2086487304 @default.
- W4225508617 cites W2093839933 @default.
- W4225508617 cites W2111935653 @default.
- W4225508617 cites W2113954289 @default.
- W4225508617 cites W2117907736 @default.
- W4225508617 cites W2121607310 @default.
- W4225508617 cites W2133527003 @default.
- W4225508617 cites W2134192692 @default.
- W4225508617 cites W2152195021 @default.
- W4225508617 cites W2154857840 @default.
- W4225508617 cites W2460831324 @default.
- W4225508617 cites W2519180800 @default.
- W4225508617 cites W2626435386 @default.
- W4225508617 cites W2795856719 @default.
- W4225508617 cites W2883861563 @default.
- W4225508617 cites W2946831945 @default.
- W4225508617 cites W2950357582 @default.
- W4225508617 cites W2954617006 @default.
- W4225508617 cites W2964460729 @default.
- W4225508617 cites W2995622545 @default.
- W4225508617 cites W3004413963 @default.
- W4225508617 cites W3041824740 @default.
- W4225508617 cites W4236263504 @default.
- W4225508617 doi "https://doi.org/10.1016/j.eswa.2022.117167" @default.
- W4225508617 hasPublicationYear "2022" @default.
- W4225508617 type Work @default.
- W4225508617 citedByCount "1" @default.
- W4225508617 countsByYear W42255086172022 @default.
- W4225508617 crossrefType "journal-article" @default.
- W4225508617 hasAuthorship W4225508617A5001976537 @default.
- W4225508617 hasAuthorship W4225508617A5012886737 @default.
- W4225508617 hasAuthorship W4225508617A5013982994 @default.
- W4225508617 hasAuthorship W4225508617A5026216387 @default.
- W4225508617 hasAuthorship W4225508617A5030316532 @default.
- W4225508617 hasAuthorship W4225508617A5037787380 @default.
- W4225508617 hasAuthorship W4225508617A5038686010 @default.
- W4225508617 hasAuthorship W4225508617A5040845275 @default.
- W4225508617 hasAuthorship W4225508617A5046182165 @default.
- W4225508617 hasAuthorship W4225508617A5052604050 @default.
- W4225508617 hasAuthorship W4225508617A5085354226 @default.
- W4225508617 hasBestOaLocation W42255086171 @default.
- W4225508617 hasConcept C119857082 @default.
- W4225508617 hasConcept C154945302 @default.
- W4225508617 hasConcept C41008148 @default.
- W4225508617 hasConceptScore W4225508617C119857082 @default.
- W4225508617 hasConceptScore W4225508617C154945302 @default.
- W4225508617 hasConceptScore W4225508617C41008148 @default.
- W4225508617 hasFunder F4320306076 @default.
- W4225508617 hasLocation W42255086171 @default.
- W4225508617 hasOpenAccess W4225508617 @default.
- W4225508617 hasPrimaryLocation W42255086171 @default.
- W4225508617 hasRelatedWork W2961085424 @default.
- W4225508617 hasRelatedWork W3046775127 @default.
- W4225508617 hasRelatedWork W3107474891 @default.
- W4225508617 hasRelatedWork W3209574120 @default.
- W4225508617 hasRelatedWork W4205958290 @default.
- W4225508617 hasRelatedWork W4285260836 @default.
- W4225508617 hasRelatedWork W4286629047 @default.
- W4225508617 hasRelatedWork W4306321456 @default.
- W4225508617 hasRelatedWork W4306674287 @default.
- W4225508617 hasRelatedWork W4224009465 @default.
- W4225508617 hasVolume "199" @default.
- W4225508617 isParatext "false" @default.
- W4225508617 isRetracted "false" @default.
- W4225508617 workType "article" @default.