Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225513423> ?p ?o ?g. }
- W4225513423 endingPage "106610" @default.
- W4225513423 startingPage "106610" @default.
- W4225513423 abstract "Automatic airway segmentation from chest computed tomography (CT) scans plays an important role in pulmonary disease diagnosis and computer-assisted therapy. However, low contrast at peripheral branches and complex tree-like structures remain as two mainly challenges for airway segmentation. Recent research has illustrated that deep learning methods perform well in segmentation tasks. Motivated by these works, a coarse-to-fine segmentation framework is proposed to obtain a complete airway tree.Our framework segments the overall airway and small branches via the multi-information fusion convolution neural network (Mif-CNN) and the CNN-based region growing, respectively. In Mif-CNN, atrous spatial pyramid pooling (ASPP) is integrated into a u-shaped network, and it can expend the receptive field and capture multi-scale information. Meanwhile, boundary and location information are incorporated into semantic information. These information are fused to help Mif-CNN utilize additional context knowledge and useful features. To improve the performance of the segmentation result, the CNN-based region growing method is designed to focus on obtaining small branches. A voxel classification network (VCN), which can entirely capture the rich information around each voxel, is applied to classify the voxels into airway and non-airway. In addition, a shape reconstruction method is used to refine the airway tree.We evaluate our method on a private dataset and a public dataset from EXACT09. Compared with the segmentation results from other methods, our method demonstrated promising accuracy in complete airway tree segmentation. In the private dataset, the Dice similarity coefficient (DSC), Intersection over Union (IoU), false positive rate (FPR), and sensitivity are 93.5%, 87.8%, 0.015%, and 90.8%, respectively. In the public dataset, the DSC, IoU, FPR, and sensitivity are 95.8%, 91.9%, 0.053% and 96.6%, respectively.The proposed Mif-CNN and CNN-based region growing method segment the airway tree accurately and efficiently in CT scans. Experimental results also demonstrate that the framework is ready for application in computer-aided diagnosis systems for lung disease and other related works." @default.
- W4225513423 created "2022-05-05" @default.
- W4225513423 creator A5014910543 @default.
- W4225513423 creator A5019024344 @default.
- W4225513423 creator A5066941110 @default.
- W4225513423 creator A5073494285 @default.
- W4225513423 creator A5086215557 @default.
- W4225513423 creator A5088871763 @default.
- W4225513423 creator A5089410159 @default.
- W4225513423 date "2022-03-01" @default.
- W4225513423 modified "2023-10-09" @default.
- W4225513423 title "Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing" @default.
- W4225513423 cites W1998415587 @default.
- W4225513423 cites W2011475946 @default.
- W4225513423 cites W2045898750 @default.
- W4225513423 cites W2091569892 @default.
- W4225513423 cites W2092899091 @default.
- W4225513423 cites W2101975343 @default.
- W4225513423 cites W2102670371 @default.
- W4225513423 cites W2464708700 @default.
- W4225513423 cites W2547055581 @default.
- W4225513423 cites W2751325436 @default.
- W4225513423 cites W2751998826 @default.
- W4225513423 cites W2798095897 @default.
- W4225513423 cites W2885818977 @default.
- W4225513423 cites W2896620274 @default.
- W4225513423 cites W2952846208 @default.
- W4225513423 cites W2979301493 @default.
- W4225513423 cites W2979686823 @default.
- W4225513423 cites W2979907638 @default.
- W4225513423 cites W2980126335 @default.
- W4225513423 cites W2990984982 @default.
- W4225513423 cites W3024821730 @default.
- W4225513423 cites W3026589015 @default.
- W4225513423 cites W3034484960 @default.
- W4225513423 cites W3089479421 @default.
- W4225513423 cites W3090653492 @default.
- W4225513423 cites W3091852692 @default.
- W4225513423 cites W3131051785 @default.
- W4225513423 cites W3132106430 @default.
- W4225513423 cites W3158436118 @default.
- W4225513423 cites W3163015687 @default.
- W4225513423 doi "https://doi.org/10.1016/j.cmpb.2021.106610" @default.
- W4225513423 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35077902" @default.
- W4225513423 hasPublicationYear "2022" @default.
- W4225513423 type Work @default.
- W4225513423 citedByCount "4" @default.
- W4225513423 countsByYear W42255134232023 @default.
- W4225513423 crossrefType "journal-article" @default.
- W4225513423 hasAuthorship W4225513423A5014910543 @default.
- W4225513423 hasAuthorship W4225513423A5019024344 @default.
- W4225513423 hasAuthorship W4225513423A5066941110 @default.
- W4225513423 hasAuthorship W4225513423A5073494285 @default.
- W4225513423 hasAuthorship W4225513423A5086215557 @default.
- W4225513423 hasAuthorship W4225513423A5088871763 @default.
- W4225513423 hasAuthorship W4225513423A5089410159 @default.
- W4225513423 hasBestOaLocation W42255134232 @default.
- W4225513423 hasConcept C108583219 @default.
- W4225513423 hasConcept C113174947 @default.
- W4225513423 hasConcept C124504099 @default.
- W4225513423 hasConcept C134306372 @default.
- W4225513423 hasConcept C142575187 @default.
- W4225513423 hasConcept C151730666 @default.
- W4225513423 hasConcept C153180895 @default.
- W4225513423 hasConcept C154945302 @default.
- W4225513423 hasConcept C2524010 @default.
- W4225513423 hasConcept C2779343474 @default.
- W4225513423 hasConcept C31972630 @default.
- W4225513423 hasConcept C33923547 @default.
- W4225513423 hasConcept C41008148 @default.
- W4225513423 hasConcept C54170458 @default.
- W4225513423 hasConcept C86803240 @default.
- W4225513423 hasConcept C89600930 @default.
- W4225513423 hasConceptScore W4225513423C108583219 @default.
- W4225513423 hasConceptScore W4225513423C113174947 @default.
- W4225513423 hasConceptScore W4225513423C124504099 @default.
- W4225513423 hasConceptScore W4225513423C134306372 @default.
- W4225513423 hasConceptScore W4225513423C142575187 @default.
- W4225513423 hasConceptScore W4225513423C151730666 @default.
- W4225513423 hasConceptScore W4225513423C153180895 @default.
- W4225513423 hasConceptScore W4225513423C154945302 @default.
- W4225513423 hasConceptScore W4225513423C2524010 @default.
- W4225513423 hasConceptScore W4225513423C2779343474 @default.
- W4225513423 hasConceptScore W4225513423C31972630 @default.
- W4225513423 hasConceptScore W4225513423C33923547 @default.
- W4225513423 hasConceptScore W4225513423C41008148 @default.
- W4225513423 hasConceptScore W4225513423C54170458 @default.
- W4225513423 hasConceptScore W4225513423C86803240 @default.
- W4225513423 hasConceptScore W4225513423C89600930 @default.
- W4225513423 hasLocation W42255134231 @default.
- W4225513423 hasLocation W42255134232 @default.
- W4225513423 hasLocation W42255134233 @default.
- W4225513423 hasOpenAccess W4225513423 @default.
- W4225513423 hasPrimaryLocation W42255134231 @default.
- W4225513423 hasRelatedWork W1669643531 @default.
- W4225513423 hasRelatedWork W2005437358 @default.
- W4225513423 hasRelatedWork W2008656436 @default.
- W4225513423 hasRelatedWork W2023558673 @default.