Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225513536> ?p ?o ?g. }
- W4225513536 endingPage "e0266124" @default.
- W4225513536 startingPage "e0266124" @default.
- W4225513536 abstract "Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities." @default.
- W4225513536 created "2022-05-05" @default.
- W4225513536 creator A5003188146 @default.
- W4225513536 creator A5009885793 @default.
- W4225513536 creator A5016324658 @default.
- W4225513536 creator A5028741163 @default.
- W4225513536 creator A5031390275 @default.
- W4225513536 creator A5034366988 @default.
- W4225513536 creator A5045283420 @default.
- W4225513536 date "2022-04-07" @default.
- W4225513536 modified "2023-10-10" @default.
- W4225513536 title "Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches" @default.
- W4225513536 cites W1566831845 @default.
- W4225513536 cites W1820258364 @default.
- W4225513536 cites W1940068179 @default.
- W4225513536 cites W1964784273 @default.
- W4225513536 cites W1966238900 @default.
- W4225513536 cites W1976741900 @default.
- W4225513536 cites W1985540837 @default.
- W4225513536 cites W2009265361 @default.
- W4225513536 cites W2014869583 @default.
- W4225513536 cites W2017199818 @default.
- W4225513536 cites W2028305499 @default.
- W4225513536 cites W2036693329 @default.
- W4225513536 cites W2037915750 @default.
- W4225513536 cites W2047544230 @default.
- W4225513536 cites W2053835153 @default.
- W4225513536 cites W2060140838 @default.
- W4225513536 cites W2070050178 @default.
- W4225513536 cites W2077283045 @default.
- W4225513536 cites W2094366504 @default.
- W4225513536 cites W2099392687 @default.
- W4225513536 cites W2100553420 @default.
- W4225513536 cites W2105668062 @default.
- W4225513536 cites W2111785996 @default.
- W4225513536 cites W2118258530 @default.
- W4225513536 cites W2130410032 @default.
- W4225513536 cites W2132629607 @default.
- W4225513536 cites W2133422078 @default.
- W4225513536 cites W2134967712 @default.
- W4225513536 cites W2137526110 @default.
- W4225513536 cites W2138865250 @default.
- W4225513536 cites W2145647602 @default.
- W4225513536 cites W2146994504 @default.
- W4225513536 cites W2150073419 @default.
- W4225513536 cites W2151460035 @default.
- W4225513536 cites W2152207030 @default.
- W4225513536 cites W2156614913 @default.
- W4225513536 cites W2167080692 @default.
- W4225513536 cites W2170984368 @default.
- W4225513536 cites W2298964496 @default.
- W4225513536 cites W2537623931 @default.
- W4225513536 cites W2588226670 @default.
- W4225513536 cites W2588967599 @default.
- W4225513536 cites W2593417901 @default.
- W4225513536 cites W2759541239 @default.
- W4225513536 cites W2767891136 @default.
- W4225513536 cites W2770178180 @default.
- W4225513536 cites W2794302596 @default.
- W4225513536 cites W2799493433 @default.
- W4225513536 cites W2804822363 @default.
- W4225513536 cites W2809585582 @default.
- W4225513536 cites W2896530665 @default.
- W4225513536 cites W2899070097 @default.
- W4225513536 cites W2901009338 @default.
- W4225513536 cites W2906510929 @default.
- W4225513536 cites W2907180417 @default.
- W4225513536 cites W2915240809 @default.
- W4225513536 cites W2916047525 @default.
- W4225513536 cites W2928665623 @default.
- W4225513536 cites W2945706359 @default.
- W4225513536 cites W2946801855 @default.
- W4225513536 cites W2951943270 @default.
- W4225513536 cites W2953418500 @default.
- W4225513536 cites W2983166786 @default.
- W4225513536 cites W2998364478 @default.
- W4225513536 cites W3001456238 @default.
- W4225513536 cites W3001897055 @default.
- W4225513536 cites W3003217347 @default.
- W4225513536 cites W3003752833 @default.
- W4225513536 cites W3004280078 @default.
- W4225513536 cites W3005482258 @default.
- W4225513536 cites W3005510968 @default.
- W4225513536 cites W3007160431 @default.
- W4225513536 cites W3007238890 @default.
- W4225513536 cites W3010441732 @default.
- W4225513536 cites W3011072970 @default.
- W4225513536 cites W3011352177 @default.
- W4225513536 cites W3012777153 @default.
- W4225513536 cites W3012994592 @default.
- W4225513536 cites W3013393955 @default.
- W4225513536 cites W3016955027 @default.
- W4225513536 cites W3019964907 @default.
- W4225513536 cites W3020423761 @default.
- W4225513536 cites W3021242766 @default.
- W4225513536 cites W3021582812 @default.
- W4225513536 cites W3022285953 @default.
- W4225513536 cites W3027076786 @default.