Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225519477> ?p ?o ?g. }
- W4225519477 endingPage "119093" @default.
- W4225519477 startingPage "119093" @default.
- W4225519477 abstract "Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation." @default.
- W4225519477 created "2022-05-05" @default.
- W4225519477 creator A5025505609 @default.
- W4225519477 creator A5060765247 @default.
- W4225519477 date "2022-06-01" @default.
- W4225519477 modified "2023-10-11" @default.
- W4225519477 title "Is sensor space analysis good enough? Spatial patterns as a tool for assessing spatial mixing of EEG/MEG rhythms" @default.
- W4225519477 cites W1862394037 @default.
- W4225519477 cites W1974554864 @default.
- W4225519477 cites W1996538430 @default.
- W4225519477 cites W2003877340 @default.
- W4225519477 cites W2004508487 @default.
- W4225519477 cites W2011402106 @default.
- W4225519477 cites W2020745232 @default.
- W4225519477 cites W2048939758 @default.
- W4225519477 cites W2052032974 @default.
- W4225519477 cites W2052133625 @default.
- W4225519477 cites W2077491345 @default.
- W4225519477 cites W2094369959 @default.
- W4225519477 cites W2116308679 @default.
- W4225519477 cites W2137958317 @default.
- W4225519477 cites W2169918686 @default.
- W4225519477 cites W2207714503 @default.
- W4225519477 cites W2463955360 @default.
- W4225519477 cites W2555217102 @default.
- W4225519477 cites W2566775857 @default.
- W4225519477 cites W2770123655 @default.
- W4225519477 cites W2772704314 @default.
- W4225519477 cites W2799731195 @default.
- W4225519477 cites W2886905122 @default.
- W4225519477 cites W2913095566 @default.
- W4225519477 cites W2926609641 @default.
- W4225519477 cites W2950977886 @default.
- W4225519477 cites W2951757968 @default.
- W4225519477 cites W2952105217 @default.
- W4225519477 cites W2952200157 @default.
- W4225519477 cites W2952421736 @default.
- W4225519477 cites W2959219524 @default.
- W4225519477 cites W2964237078 @default.
- W4225519477 cites W3034916105 @default.
- W4225519477 cites W3110151578 @default.
- W4225519477 cites W3164504291 @default.
- W4225519477 cites W4200400876 @default.
- W4225519477 cites W4200583417 @default.
- W4225519477 doi "https://doi.org/10.1016/j.neuroimage.2022.119093" @default.
- W4225519477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35288283" @default.
- W4225519477 hasPublicationYear "2022" @default.
- W4225519477 type Work @default.
- W4225519477 citedByCount "20" @default.
- W4225519477 countsByYear W42255194772022 @default.
- W4225519477 countsByYear W42255194772023 @default.
- W4225519477 crossrefType "journal-article" @default.
- W4225519477 hasAuthorship W4225519477A5025505609 @default.
- W4225519477 hasAuthorship W4225519477A5060765247 @default.
- W4225519477 hasBestOaLocation W42255194771 @default.
- W4225519477 hasConcept C121332964 @default.
- W4225519477 hasConcept C135343436 @default.
- W4225519477 hasConcept C138777275 @default.
- W4225519477 hasConcept C153180895 @default.
- W4225519477 hasConcept C154945302 @default.
- W4225519477 hasConcept C15744967 @default.
- W4225519477 hasConcept C166957645 @default.
- W4225519477 hasConcept C169760540 @default.
- W4225519477 hasConcept C199360897 @default.
- W4225519477 hasConcept C205649164 @default.
- W4225519477 hasConcept C2434490 @default.
- W4225519477 hasConcept C24890656 @default.
- W4225519477 hasConcept C2779343474 @default.
- W4225519477 hasConcept C2779843651 @default.
- W4225519477 hasConcept C2910144760 @default.
- W4225519477 hasConcept C41008148 @default.
- W4225519477 hasConcept C51432778 @default.
- W4225519477 hasConcept C522805319 @default.
- W4225519477 hasConcept C556910895 @default.
- W4225519477 hasConcept C62520636 @default.
- W4225519477 hasConceptScore W4225519477C121332964 @default.
- W4225519477 hasConceptScore W4225519477C135343436 @default.
- W4225519477 hasConceptScore W4225519477C138777275 @default.
- W4225519477 hasConceptScore W4225519477C153180895 @default.
- W4225519477 hasConceptScore W4225519477C154945302 @default.
- W4225519477 hasConceptScore W4225519477C15744967 @default.
- W4225519477 hasConceptScore W4225519477C166957645 @default.
- W4225519477 hasConceptScore W4225519477C169760540 @default.
- W4225519477 hasConceptScore W4225519477C199360897 @default.
- W4225519477 hasConceptScore W4225519477C205649164 @default.
- W4225519477 hasConceptScore W4225519477C2434490 @default.
- W4225519477 hasConceptScore W4225519477C24890656 @default.
- W4225519477 hasConceptScore W4225519477C2779343474 @default.
- W4225519477 hasConceptScore W4225519477C2779843651 @default.
- W4225519477 hasConceptScore W4225519477C2910144760 @default.
- W4225519477 hasConceptScore W4225519477C41008148 @default.
- W4225519477 hasConceptScore W4225519477C51432778 @default.
- W4225519477 hasConceptScore W4225519477C522805319 @default.
- W4225519477 hasConceptScore W4225519477C556910895 @default.
- W4225519477 hasConceptScore W4225519477C62520636 @default.
- W4225519477 hasLocation W42255194771 @default.
- W4225519477 hasLocation W42255194772 @default.
- W4225519477 hasLocation W42255194773 @default.