Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225519480> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4225519480 endingPage "285" @default.
- W4225519480 startingPage "280" @default.
- W4225519480 abstract "<h3>BACKGROUND AND PURPOSE:</h3> Accurate radiologic prediction of cavernous sinus invasion by pituitary adenoma remains challenging. We aimed to assess whether 1-mm-slice-thickness MRI with deep learning–based reconstruction can better predict cavernous sinus invasion by pituitary adenoma preoperatively and to estimate the depth of invasion and degree of contact in relation to the carotid artery, compared with 3-mm-slice-thickness MRI. <h3>MATERIALS AND METHODS:</h3> This single-institution, prospective study included 67 consecutive patients (mean age, 53 [SD, 12] years; 28 women), between January and August 2020, who underwent a combined contrast-enhanced T1-weighted imaging protocol of 1-mm-slice-thickness MRI + deep learning–based reconstruction and 3-mm-slice-thickness MRI. An expert neuroradiologist who was blinded to the imaging protocol determined cavernous sinus invasion using the modified Knosp classification on 1-mm-slice-thickness MRI + deep learning–based reconstruction and 3-mm-slice-thickness MRI, respectively. Reference standards were established by the consensus of radiologic, intraoperative, pathologic, and laboratory findings. The primary end point was the diagnostic performance of each imaging protocol, and the secondary end points included depth of invasion and degree of contact in relation to the carotid artery. <h3>RESULTS:</h3> The diagnostic performance of 1-mm-slice-thickness MRI + deep learning–based reconstruction (area under the curve, 0.79; 95% CI, 0.69 − 0.89) in predicting cavernous sinus invasion by pituitary adenoma was higher than that of 3-mm-slice-thickness MRI (area under the curve, 0.61; 95% CI, 0.52–0.70; <i>P </i>< .001). One-millimeter-slice-thickness MRI + deep learning–based reconstruction demonstrated greater depth of invasion by pituitary adenomas from the medial intercarotid line than 3-mm-slice-thickness MRI (4.07 versus 3.12 mm, <i>P </i>< .001). A higher proportion of cases were in a greater degree of contact with the intracavernous ICA with 1-mm-slice-thickness MRI + deep learning–based reconstruction than with 3-mm-slice-thickness MRI (total encasement, 37.3% versus 13.4%, <i>P </i>< .001; >270°, 38.8% versus 16.4%, <i>P </i>< .001). <h3>CONCLUSIONS:</h3> Compared with 3-mm-slice-thickness MRI, 1-mm-slice-thickness MRI + deep learning–based reconstruction showed a higher diagnostic performance in preoperatively predicting cavernous sinus invasion by pituitary adenomas and demonstrated a greater depth and degree of contact in relation to the carotid artery." @default.
- W4225519480 created "2022-05-05" @default.
- W4225519480 creator A5009077177 @default.
- W4225519480 creator A5011900177 @default.
- W4225519480 creator A5024089123 @default.
- W4225519480 creator A5033181174 @default.
- W4225519480 creator A5040103448 @default.
- W4225519480 creator A5041699601 @default.
- W4225519480 creator A5055474455 @default.
- W4225519480 creator A5082641741 @default.
- W4225519480 date "2022-01-06" @default.
- W4225519480 modified "2023-10-03" @default.
- W4225519480 title "Thin-Slice Pituitary MRI with Deep Learning–Based Reconstruction for Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenoma: A Prospective Study" @default.
- W4225519480 cites W1493959924 @default.
- W4225519480 cites W2009656180 @default.
- W4225519480 cites W2012095343 @default.
- W4225519480 cites W2088277537 @default.
- W4225519480 cites W2090315390 @default.
- W4225519480 cites W2100301546 @default.
- W4225519480 cites W2102933998 @default.
- W4225519480 cites W2122814649 @default.
- W4225519480 cites W2131388016 @default.
- W4225519480 cites W2138252613 @default.
- W4225519480 cites W2142504546 @default.
- W4225519480 cites W2146094051 @default.
- W4225519480 cites W2322202383 @default.
- W4225519480 cites W2572399935 @default.
- W4225519480 cites W2893043043 @default.
- W4225519480 cites W2960877555 @default.
- W4225519480 cites W3097918907 @default.
- W4225519480 cites W2047703105 @default.
- W4225519480 doi "https://doi.org/10.3174/ajnr.a7387" @default.
- W4225519480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34992127" @default.
- W4225519480 hasPublicationYear "2022" @default.
- W4225519480 type Work @default.
- W4225519480 citedByCount "5" @default.
- W4225519480 countsByYear W42255194802023 @default.
- W4225519480 crossrefType "journal-article" @default.
- W4225519480 hasAuthorship W4225519480A5009077177 @default.
- W4225519480 hasAuthorship W4225519480A5011900177 @default.
- W4225519480 hasAuthorship W4225519480A5024089123 @default.
- W4225519480 hasAuthorship W4225519480A5033181174 @default.
- W4225519480 hasAuthorship W4225519480A5040103448 @default.
- W4225519480 hasAuthorship W4225519480A5041699601 @default.
- W4225519480 hasAuthorship W4225519480A5055474455 @default.
- W4225519480 hasAuthorship W4225519480A5082641741 @default.
- W4225519480 hasBestOaLocation W42255194801 @default.
- W4225519480 hasConcept C126322002 @default.
- W4225519480 hasConcept C126838900 @default.
- W4225519480 hasConcept C142724271 @default.
- W4225519480 hasConcept C143409427 @default.
- W4225519480 hasConcept C2776741419 @default.
- W4225519480 hasConcept C2777428134 @default.
- W4225519480 hasConcept C2777658017 @default.
- W4225519480 hasConcept C2779318953 @default.
- W4225519480 hasConcept C2908910360 @default.
- W4225519480 hasConcept C2989005 @default.
- W4225519480 hasConcept C71315377 @default.
- W4225519480 hasConcept C71924100 @default.
- W4225519480 hasConceptScore W4225519480C126322002 @default.
- W4225519480 hasConceptScore W4225519480C126838900 @default.
- W4225519480 hasConceptScore W4225519480C142724271 @default.
- W4225519480 hasConceptScore W4225519480C143409427 @default.
- W4225519480 hasConceptScore W4225519480C2776741419 @default.
- W4225519480 hasConceptScore W4225519480C2777428134 @default.
- W4225519480 hasConceptScore W4225519480C2777658017 @default.
- W4225519480 hasConceptScore W4225519480C2779318953 @default.
- W4225519480 hasConceptScore W4225519480C2908910360 @default.
- W4225519480 hasConceptScore W4225519480C2989005 @default.
- W4225519480 hasConceptScore W4225519480C71315377 @default.
- W4225519480 hasConceptScore W4225519480C71924100 @default.
- W4225519480 hasIssue "2" @default.
- W4225519480 hasLocation W42255194801 @default.
- W4225519480 hasLocation W42255194802 @default.
- W4225519480 hasLocation W42255194803 @default.
- W4225519480 hasOpenAccess W4225519480 @default.
- W4225519480 hasPrimaryLocation W42255194801 @default.
- W4225519480 hasRelatedWork W1982229773 @default.
- W4225519480 hasRelatedWork W1994586804 @default.
- W4225519480 hasRelatedWork W2007739396 @default.
- W4225519480 hasRelatedWork W2010080923 @default.
- W4225519480 hasRelatedWork W2091349099 @default.
- W4225519480 hasRelatedWork W2409178813 @default.
- W4225519480 hasRelatedWork W2409579283 @default.
- W4225519480 hasRelatedWork W2411166771 @default.
- W4225519480 hasRelatedWork W2749986158 @default.
- W4225519480 hasRelatedWork W4379193996 @default.
- W4225519480 hasVolume "43" @default.
- W4225519480 isParatext "false" @default.
- W4225519480 isRetracted "false" @default.
- W4225519480 workType "article" @default.