Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225523537> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4225523537 endingPage "66" @default.
- W4225523537 startingPage "41" @default.
- W4225523537 abstract "AbstractSmarter approaches to data processing are essential to realise the potential benefits of the exponential growth in energy data in homes from a variety of sources, such as smart metres, sensors and other devices. Machine learning encompasses several techniques to process and visualise data. Each technique is specifically suited to certain data types and problems, whether it be supervised, unsupervised or reinforcement learning. These techniques can be applied to increase the efficient use of energy within a home, enable better and more accurate home owner decision-making and help contribute to greener building stock. This chapter presents the state of the art in this area and looks forward to potential new uses for machine learning in renewable energy data.KeywordsMachine learningSmart homeEnergy managementEnergy modellingGreen buildingsBig data" @default.
- W4225523537 created "2022-05-05" @default.
- W4225523537 creator A5002658986 @default.
- W4225523537 creator A5017317719 @default.
- W4225523537 creator A5036436376 @default.
- W4225523537 creator A5049231032 @default.
- W4225523537 creator A5060705812 @default.
- W4225523537 date "2022-01-01" @default.
- W4225523537 modified "2023-09-27" @default.
- W4225523537 title "Machine Learning for Green Smart Homes" @default.
- W4225523537 cites W1511501560 @default.
- W4225523537 cites W2018879588 @default.
- W4225523537 cites W2019765022 @default.
- W4225523537 cites W2032307400 @default.
- W4225523537 cites W2069726507 @default.
- W4225523537 cites W2112207166 @default.
- W4225523537 cites W2342680502 @default.
- W4225523537 cites W2346917322 @default.
- W4225523537 cites W2534752816 @default.
- W4225523537 cites W2549671876 @default.
- W4225523537 cites W2763143535 @default.
- W4225523537 cites W2886354130 @default.
- W4225523537 cites W2906824711 @default.
- W4225523537 cites W2951753133 @default.
- W4225523537 cites W2998152821 @default.
- W4225523537 cites W3016514158 @default.
- W4225523537 cites W3047806272 @default.
- W4225523537 cites W3047833738 @default.
- W4225523537 cites W3111777985 @default.
- W4225523537 cites W3117142444 @default.
- W4225523537 cites W3124112412 @default.
- W4225523537 cites W3166158849 @default.
- W4225523537 cites W3195329399 @default.
- W4225523537 cites W4233104126 @default.
- W4225523537 cites W4242786657 @default.
- W4225523537 cites W4254703201 @default.
- W4225523537 doi "https://doi.org/10.1007/978-3-030-96429-0_2" @default.
- W4225523537 hasPublicationYear "2022" @default.
- W4225523537 type Work @default.
- W4225523537 citedByCount "0" @default.
- W4225523537 crossrefType "book-chapter" @default.
- W4225523537 hasAuthorship W4225523537A5002658986 @default.
- W4225523537 hasAuthorship W4225523537A5017317719 @default.
- W4225523537 hasAuthorship W4225523537A5036436376 @default.
- W4225523537 hasAuthorship W4225523537A5049231032 @default.
- W4225523537 hasAuthorship W4225523537A5060705812 @default.
- W4225523537 hasConcept C111919701 @default.
- W4225523537 hasConcept C119599485 @default.
- W4225523537 hasConcept C119857082 @default.
- W4225523537 hasConcept C127413603 @default.
- W4225523537 hasConcept C136197465 @default.
- W4225523537 hasConcept C154945302 @default.
- W4225523537 hasConcept C188573790 @default.
- W4225523537 hasConcept C2522767166 @default.
- W4225523537 hasConcept C41008148 @default.
- W4225523537 hasConcept C507571656 @default.
- W4225523537 hasConcept C76155785 @default.
- W4225523537 hasConcept C97541855 @default.
- W4225523537 hasConcept C98045186 @default.
- W4225523537 hasConceptScore W4225523537C111919701 @default.
- W4225523537 hasConceptScore W4225523537C119599485 @default.
- W4225523537 hasConceptScore W4225523537C119857082 @default.
- W4225523537 hasConceptScore W4225523537C127413603 @default.
- W4225523537 hasConceptScore W4225523537C136197465 @default.
- W4225523537 hasConceptScore W4225523537C154945302 @default.
- W4225523537 hasConceptScore W4225523537C188573790 @default.
- W4225523537 hasConceptScore W4225523537C2522767166 @default.
- W4225523537 hasConceptScore W4225523537C41008148 @default.
- W4225523537 hasConceptScore W4225523537C507571656 @default.
- W4225523537 hasConceptScore W4225523537C76155785 @default.
- W4225523537 hasConceptScore W4225523537C97541855 @default.
- W4225523537 hasConceptScore W4225523537C98045186 @default.
- W4225523537 hasLocation W42255235371 @default.
- W4225523537 hasOpenAccess W4225523537 @default.
- W4225523537 hasPrimaryLocation W42255235371 @default.
- W4225523537 hasRelatedWork W2923653485 @default.
- W4225523537 hasRelatedWork W2952472710 @default.
- W4225523537 hasRelatedWork W2957776456 @default.
- W4225523537 hasRelatedWork W2961085424 @default.
- W4225523537 hasRelatedWork W3022038857 @default.
- W4225523537 hasRelatedWork W4206669594 @default.
- W4225523537 hasRelatedWork W4224287422 @default.
- W4225523537 hasRelatedWork W4255994452 @default.
- W4225523537 hasRelatedWork W4319083788 @default.
- W4225523537 hasRelatedWork W4319773215 @default.
- W4225523537 isParatext "false" @default.
- W4225523537 isRetracted "false" @default.
- W4225523537 workType "book-chapter" @default.