Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225524963> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4225524963 abstract "Big DataVol. 9, No. 6 Calls for PapersFree AccessCall for Special Issue Papers: Levering Emerging Technologies in Supply Chain ManagementDeadline for Manuscript Submission: February 26, 2022Guest Editors: Imran Razzak, Roberto Perez-Franco, and Peter EklundGuest Editors: Imran RazzakDeakin University, Victoria, AustraliaSearch for more papers by this author, Roberto Perez-FrancoDeakin University, Victoria, AustraliaSearch for more papers by this author, and Peter EklundDeakin University, Victoria, AustraliaSearch for more papers by this authorPublished Online:10 Dec 2021https://doi.org/10.1089/big.2021.29047.cfp3AboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail The Industrial sector is going through a transformational wave of automation and digitization. The supply chain and logistics industry is confronting similar circumstances. New, emerging technologies are being introduced in the industry. Taking data use one step further, the same technologies can anticipate future behavior and enable businesses to be proactive. By enabling machine learning capabilities and predictive analytics, businesses can ensure that demand can be met with minimal costs. For example, it is possible to anticipate the demand through historical data. It could be seasonal, or even more ad-hoc – based on predicted environmental conditions. With the right inventory systems in place, it's possible to identify if sufficient inventory is available to meet the expected rise in demands, and if not, the system automatically starts adjusting the orders with suppliers to source the raw materials to overcome the anticipated future high demand.Traditional ways of managing the supply chain are gradually being replaced by innovative ones – many of which feature emerging technologies, such as Big Data analytics, social media, Internet of Things (IoT), Machine Learning and Blockchain. With the use of emerging technologies, organizations can prepare to meet the expected demand. This can prevent a surplus of inventory and prove to be a vital cost saving measure in the long-term.Topics of InterestThis special issue will focus on development of novel emerging technologies to improve the current methodologies in logistics and supply chain sector. We aim to gain a deeper understanding of how the adoption of emerging technologies helps companies to enhance responsiveness, resilience, and restoration in supply chains. We invite researchers working on practical use-cases of emerging technologies in supply chain. We are looking research papers based on experimental or theoretical novel contributions related to supply chain management including, but not limited to, the following: Machine Learning for supply chainBid Data analytics in supply chainProduct forecastingPlanning product assortments and recommendationDynamic resource allocationUsing browsing and/or sensor data to manage inventory and replenishmentStrategies to improve supply chain operationsVehicle loading, routing, and monitoring safety (optimization that incorporates real-time data)Managing and mitigating supply chain riskSupplier risk assessment, evaluation, and supplier portfolio developmentManaging after-sales serviceAll manuscripts submitted must be original, not under consideration elsewhere, and not previously published. The peer review process is designed to avoid bias and conflict of interest on the part of reviewers and is composed of experts in the relevant field of research. A key criterion in publication decisions will be the manuscript's fit for the special issue. Papers will be published online as soon as accepted.Deadline of Submissions: February 26, 2022Submission GuidelinesProspective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers. Paper submissions for this special issue should follow the submission format and guidelines available at www.liebertpub.com/bigVisit the Instructions for Authors:www.liebertpub.com/bigSubmit your paper for peer review online:https://mc.manuscriptcentral.com/bigFiguresReferencesRelatedDetails Volume 9Issue 6Dec 2021 InformationCopyright 2021, Mary Ann Liebert, Inc., publishersTo cite this article:Guest Editors: Imran Razzak, Roberto Perez-Franco, and Peter Eklund.Call for Special Issue Papers: Levering Emerging Technologies in Supply Chain Management.Big Data.Dec 2021.411-412.http://doi.org/10.1089/big.2021.29047.cfp3Published in Volume: 9 Issue 6: December 10, 2021Online Ahead of Print:November 16, 2021PDF download" @default.
- W4225524963 created "2022-05-05" @default.
- W4225524963 creator A5031266770 @default.
- W4225524963 creator A5031593229 @default.
- W4225524963 creator A5089636670 @default.
- W4225524963 date "2021-11-16" @default.
- W4225524963 modified "2023-10-16" @default.
- W4225524963 title "Call for Special Issue Papers: Levering Emerging Technologies in Supply Chain Management" @default.
- W4225524963 doi "https://doi.org/10.1089/big.2021.29047.cfp3" @default.
- W4225524963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34788106" @default.
- W4225524963 hasPublicationYear "2021" @default.
- W4225524963 type Work @default.
- W4225524963 citedByCount "0" @default.
- W4225524963 crossrefType "journal-article" @default.
- W4225524963 hasAuthorship W4225524963A5031266770 @default.
- W4225524963 hasAuthorship W4225524963A5031593229 @default.
- W4225524963 hasAuthorship W4225524963A5089636670 @default.
- W4225524963 hasConcept C108713360 @default.
- W4225524963 hasConcept C111919701 @default.
- W4225524963 hasConcept C127413603 @default.
- W4225524963 hasConcept C144133560 @default.
- W4225524963 hasConcept C154945302 @default.
- W4225524963 hasConcept C162324750 @default.
- W4225524963 hasConcept C162853370 @default.
- W4225524963 hasConcept C187736073 @default.
- W4225524963 hasConcept C207267971 @default.
- W4225524963 hasConcept C2522767166 @default.
- W4225524963 hasConcept C2779308522 @default.
- W4225524963 hasConcept C38775462 @default.
- W4225524963 hasConcept C41008148 @default.
- W4225524963 hasConcept C42475967 @default.
- W4225524963 hasConcept C44104985 @default.
- W4225524963 hasConcept C75684735 @default.
- W4225524963 hasConcept C76155785 @default.
- W4225524963 hasConcept C79158427 @default.
- W4225524963 hasConceptScore W4225524963C108713360 @default.
- W4225524963 hasConceptScore W4225524963C111919701 @default.
- W4225524963 hasConceptScore W4225524963C127413603 @default.
- W4225524963 hasConceptScore W4225524963C144133560 @default.
- W4225524963 hasConceptScore W4225524963C154945302 @default.
- W4225524963 hasConceptScore W4225524963C162324750 @default.
- W4225524963 hasConceptScore W4225524963C162853370 @default.
- W4225524963 hasConceptScore W4225524963C187736073 @default.
- W4225524963 hasConceptScore W4225524963C207267971 @default.
- W4225524963 hasConceptScore W4225524963C2522767166 @default.
- W4225524963 hasConceptScore W4225524963C2779308522 @default.
- W4225524963 hasConceptScore W4225524963C38775462 @default.
- W4225524963 hasConceptScore W4225524963C41008148 @default.
- W4225524963 hasConceptScore W4225524963C42475967 @default.
- W4225524963 hasConceptScore W4225524963C44104985 @default.
- W4225524963 hasConceptScore W4225524963C75684735 @default.
- W4225524963 hasConceptScore W4225524963C76155785 @default.
- W4225524963 hasConceptScore W4225524963C79158427 @default.
- W4225524963 hasLocation W42255249631 @default.
- W4225524963 hasLocation W42255249632 @default.
- W4225524963 hasOpenAccess W4225524963 @default.
- W4225524963 hasPrimaryLocation W42255249631 @default.
- W4225524963 hasRelatedWork W1982819851 @default.
- W4225524963 hasRelatedWork W2382100893 @default.
- W4225524963 hasRelatedWork W2605996868 @default.
- W4225524963 hasRelatedWork W2750442662 @default.
- W4225524963 hasRelatedWork W2802265855 @default.
- W4225524963 hasRelatedWork W3109490607 @default.
- W4225524963 hasRelatedWork W3126232934 @default.
- W4225524963 hasRelatedWork W3182315362 @default.
- W4225524963 hasRelatedWork W4205185682 @default.
- W4225524963 hasRelatedWork W4319067485 @default.
- W4225524963 isParatext "false" @default.
- W4225524963 isRetracted "false" @default.
- W4225524963 workType "article" @default.