Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225528178> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4225528178 abstract "The latest sheet stamping processes enable efficient manufacturing of complex shape structural components that have high stiffness to weight ratios, but these processes can introduce defects. To assist component design for stamping processes, this paper presents a novel deep-learning-based platform for optimising 3D component geometries. The platform adopts a non-parametric modelling approach that is capable of optimising arbitrary geometries from multiple geometric parameterisation schema. This approach features the interaction of two neural networks: 1) a geometry generator and 2) a manufacturing performance evaluator. The generator predicts continuous 3D signed distance fields (SDFs) for geometries of different classes, and each SDF is conditioned on a latent vector. The zero-level-set of each SDF implicitly represents a generated geometry. Novel training strategies for the generator are introduced and include a new loss function which is tailored for sheet stamping applications. These strategies enable the differentiable generation of high quality, large scale component geometries with tight local features for the first time. The evaluator maps a 2D projection of these generated geometries to their post-stamping physical (e.g., strain) distributions. Manufacturing constraints are imposed based on these distributions and are used to formulate a novel objective function for optimisation. A new gradient-based optimisation technique is employed to iteratively update the latent vectors, and therefore geometries, to minimise this objective function and thus meet the manufacturing constraints. Case studies based on optimising box geometries subject to a sheet thinning constraint for a hot stamping process are presented and discussed. The results show that expressive geometric changes are achievable, and that these changes are driven by stamping performance." @default.
- W4225528178 created "2022-05-05" @default.
- W4225528178 creator A5015105154 @default.
- W4225528178 creator A5015611817 @default.
- W4225528178 creator A5023882680 @default.
- W4225528178 date "2022-02-04" @default.
- W4225528178 modified "2023-10-16" @default.
- W4225528178 title "Development of a deep learning platform for optimising sheet stamping geometries subject to manufacturing constraints" @default.
- W4225528178 doi "https://doi.org/10.48550/arxiv.2202.03422" @default.
- W4225528178 hasPublicationYear "2022" @default.
- W4225528178 type Work @default.
- W4225528178 citedByCount "0" @default.
- W4225528178 crossrefType "posted-content" @default.
- W4225528178 hasAuthorship W4225528178A5015105154 @default.
- W4225528178 hasAuthorship W4225528178A5015611817 @default.
- W4225528178 hasAuthorship W4225528178A5023882680 @default.
- W4225528178 hasBestOaLocation W42255281781 @default.
- W4225528178 hasConcept C105795698 @default.
- W4225528178 hasConcept C11413529 @default.
- W4225528178 hasConcept C117251300 @default.
- W4225528178 hasConcept C121332964 @default.
- W4225528178 hasConcept C127413603 @default.
- W4225528178 hasConcept C144444463 @default.
- W4225528178 hasConcept C163258240 @default.
- W4225528178 hasConcept C168167062 @default.
- W4225528178 hasConcept C2779747408 @default.
- W4225528178 hasConcept C2780992000 @default.
- W4225528178 hasConcept C2781031896 @default.
- W4225528178 hasConcept C33923547 @default.
- W4225528178 hasConcept C41008148 @default.
- W4225528178 hasConcept C62520636 @default.
- W4225528178 hasConcept C78519656 @default.
- W4225528178 hasConcept C97355855 @default.
- W4225528178 hasConceptScore W4225528178C105795698 @default.
- W4225528178 hasConceptScore W4225528178C11413529 @default.
- W4225528178 hasConceptScore W4225528178C117251300 @default.
- W4225528178 hasConceptScore W4225528178C121332964 @default.
- W4225528178 hasConceptScore W4225528178C127413603 @default.
- W4225528178 hasConceptScore W4225528178C144444463 @default.
- W4225528178 hasConceptScore W4225528178C163258240 @default.
- W4225528178 hasConceptScore W4225528178C168167062 @default.
- W4225528178 hasConceptScore W4225528178C2779747408 @default.
- W4225528178 hasConceptScore W4225528178C2780992000 @default.
- W4225528178 hasConceptScore W4225528178C2781031896 @default.
- W4225528178 hasConceptScore W4225528178C33923547 @default.
- W4225528178 hasConceptScore W4225528178C41008148 @default.
- W4225528178 hasConceptScore W4225528178C62520636 @default.
- W4225528178 hasConceptScore W4225528178C78519656 @default.
- W4225528178 hasConceptScore W4225528178C97355855 @default.
- W4225528178 hasLocation W42255281781 @default.
- W4225528178 hasOpenAccess W4225528178 @default.
- W4225528178 hasPrimaryLocation W42255281781 @default.
- W4225528178 hasRelatedWork W10419229 @default.
- W4225528178 hasRelatedWork W10992419 @default.
- W4225528178 hasRelatedWork W11326594 @default.
- W4225528178 hasRelatedWork W1303186 @default.
- W4225528178 hasRelatedWork W136544 @default.
- W4225528178 hasRelatedWork W13809547 @default.
- W4225528178 hasRelatedWork W14610722 @default.
- W4225528178 hasRelatedWork W1808392 @default.
- W4225528178 hasRelatedWork W5536689 @default.
- W4225528178 hasRelatedWork W8701624 @default.
- W4225528178 isParatext "false" @default.
- W4225528178 isRetracted "false" @default.
- W4225528178 workType "article" @default.