Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225529904> ?p ?o ?g. }
- W4225529904 abstract "Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1).We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted.Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference." @default.
- W4225529904 created "2022-05-05" @default.
- W4225529904 creator A5011555000 @default.
- W4225529904 creator A5018579250 @default.
- W4225529904 creator A5019699600 @default.
- W4225529904 creator A5025541725 @default.
- W4225529904 creator A5029671081 @default.
- W4225529904 creator A5042884422 @default.
- W4225529904 creator A5049559540 @default.
- W4225529904 creator A5051720539 @default.
- W4225529904 creator A5051923416 @default.
- W4225529904 creator A5054185209 @default.
- W4225529904 creator A5085391569 @default.
- W4225529904 date "2022-04-21" @default.
- W4225529904 modified "2023-10-18" @default.
- W4225529904 title "Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection" @default.
- W4225529904 cites W1008648349 @default.
- W4225529904 cites W1494075612 @default.
- W4225529904 cites W1984371629 @default.
- W4225529904 cites W2012012446 @default.
- W4225529904 cites W2033409266 @default.
- W4225529904 cites W2042254890 @default.
- W4225529904 cites W2075331845 @default.
- W4225529904 cites W2106963975 @default.
- W4225529904 cites W2107282968 @default.
- W4225529904 cites W2110634869 @default.
- W4225529904 cites W2140177375 @default.
- W4225529904 cites W2142819802 @default.
- W4225529904 cites W2152173655 @default.
- W4225529904 cites W2154126034 @default.
- W4225529904 cites W2158804744 @default.
- W4225529904 cites W2195724570 @default.
- W4225529904 cites W2289946112 @default.
- W4225529904 cites W2291937895 @default.
- W4225529904 cites W2469102908 @default.
- W4225529904 cites W2521004200 @default.
- W4225529904 cites W2557610530 @default.
- W4225529904 cites W2574981257 @default.
- W4225529904 cites W2579021636 @default.
- W4225529904 cites W2582112491 @default.
- W4225529904 cites W2620002992 @default.
- W4225529904 cites W2765086592 @default.
- W4225529904 cites W2789843538 @default.
- W4225529904 cites W2791788025 @default.
- W4225529904 cites W2794108858 @default.
- W4225529904 cites W2808464828 @default.
- W4225529904 cites W2884730312 @default.
- W4225529904 cites W2891870314 @default.
- W4225529904 cites W2892034966 @default.
- W4225529904 cites W2894468472 @default.
- W4225529904 cites W2895237240 @default.
- W4225529904 cites W2898245710 @default.
- W4225529904 cites W2900044275 @default.
- W4225529904 cites W2901214479 @default.
- W4225529904 cites W2901224877 @default.
- W4225529904 cites W2906803538 @default.
- W4225529904 cites W2909740827 @default.
- W4225529904 cites W2918574728 @default.
- W4225529904 cites W2936410853 @default.
- W4225529904 cites W2945365545 @default.
- W4225529904 cites W2949062400 @default.
- W4225529904 cites W2949212099 @default.
- W4225529904 cites W2949978892 @default.
- W4225529904 cites W2950354111 @default.
- W4225529904 cites W2951278111 @default.
- W4225529904 cites W2958038940 @default.
- W4225529904 cites W2964679279 @default.
- W4225529904 cites W2967400973 @default.
- W4225529904 cites W2986448893 @default.
- W4225529904 cites W2987754984 @default.
- W4225529904 cites W2990344913 @default.
- W4225529904 cites W2990677539 @default.
- W4225529904 cites W2994888090 @default.
- W4225529904 cites W2999317669 @default.
- W4225529904 cites W3007046486 @default.
- W4225529904 cites W3009293561 @default.
- W4225529904 cites W3009857812 @default.
- W4225529904 cites W3012376314 @default.
- W4225529904 cites W3012486446 @default.
- W4225529904 cites W3014574598 @default.
- W4225529904 cites W3015761667 @default.
- W4225529904 cites W3016125171 @default.
- W4225529904 cites W3029878460 @default.
- W4225529904 cites W3097887116 @default.
- W4225529904 cites W3131055609 @default.
- W4225529904 cites W3134382222 @default.
- W4225529904 cites W3135234195 @default.
- W4225529904 cites W3162917414 @default.
- W4225529904 cites W3192289782 @default.
- W4225529904 doi "https://doi.org/10.1186/s12864-022-08499-4" @default.
- W4225529904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35448948" @default.
- W4225529904 hasPublicationYear "2022" @default.
- W4225529904 type Work @default.
- W4225529904 citedByCount "2" @default.
- W4225529904 countsByYear W42255299042023 @default.
- W4225529904 crossrefType "journal-article" @default.
- W4225529904 hasAuthorship W4225529904A5011555000 @default.
- W4225529904 hasAuthorship W4225529904A5018579250 @default.
- W4225529904 hasAuthorship W4225529904A5019699600 @default.
- W4225529904 hasAuthorship W4225529904A5025541725 @default.