Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225533124> ?p ?o ?g. }
- W4225533124 abstract "Arsenic (As) is a well-known carcinogen and chemical contaminant in groundwater. The spatial heterogeneity in As distribution in groundwater makes it difficult to predict the location of safe areas for tube well installations, consumption, and agriculture. Geospatial machine learning techniques have been used to predict the location of safe and unsafe areas of groundwater As. We used a similar machine learning technique and developed a habitation-level (spatial resolution 250 m) predictive model to determine the risk and extent of As >10 μg/L in groundwater in the two most affected districts of Assam, India, with an aim to advise policymakers on targeted interventions. A random forest model was employed in Python environments to predict the probabilities of As at concentrations >10 μg/L using intrinsic and extrinsic predictor variables, which were selected for their inherent relationship with As occurrence in groundwater. The relationships between predictor variables and proportions of As occurrences >10 μg/L follow the well-documented processes leading to As release in groundwater. We identified potential As hotspots based on a probability of ≥0.7 for As >10 μg/L, including regions not previously surveyed and extending beyond previously known As hotspots. Of the total land area (6,500 km2), 25% was identified as a high-risk zone, with an estimated 155,000 people potentially consuming As through drinking water or cooking food. The ternary hazard probability map (showing high, moderate, and low risk for As >10 μg/L) could inform policymakers on establishing newer drinking water treatment plants and providing safe drinking water connections to rural households." @default.
- W4225533124 created "2022-05-05" @default.
- W4225533124 creator A5004719855 @default.
- W4225533124 creator A5016283076 @default.
- W4225533124 creator A5021829777 @default.
- W4225533124 creator A5091732967 @default.
- W4225533124 date "2022-03-01" @default.
- W4225533124 modified "2023-09-25" @default.
- W4225533124 title "Predicting the Distribution of Arsenic in Groundwater by a Geospatial Machine Learning Technique in the Two Most Affected Districts of Assam, India: The Public Health Implications" @default.
- W4225533124 cites W1523692346 @default.
- W4225533124 cites W1898875569 @default.
- W4225533124 cites W1930624869 @default.
- W4225533124 cites W1969872765 @default.
- W4225533124 cites W1973875276 @default.
- W4225533124 cites W1998268195 @default.
- W4225533124 cites W1999331408 @default.
- W4225533124 cites W2011077463 @default.
- W4225533124 cites W2017496690 @default.
- W4225533124 cites W2023637404 @default.
- W4225533124 cites W2028111940 @default.
- W4225533124 cites W2034661700 @default.
- W4225533124 cites W2059334032 @default.
- W4225533124 cites W2065497010 @default.
- W4225533124 cites W2067942682 @default.
- W4225533124 cites W2082765311 @default.
- W4225533124 cites W2089471959 @default.
- W4225533124 cites W2099303078 @default.
- W4225533124 cites W2102530640 @default.
- W4225533124 cites W2107059050 @default.
- W4225533124 cites W2133777675 @default.
- W4225533124 cites W2137160312 @default.
- W4225533124 cites W2149602337 @default.
- W4225533124 cites W2155554256 @default.
- W4225533124 cites W2158698691 @default.
- W4225533124 cites W2171675471 @default.
- W4225533124 cites W2462842453 @default.
- W4225533124 cites W2599190641 @default.
- W4225533124 cites W2614464134 @default.
- W4225533124 cites W2773197674 @default.
- W4225533124 cites W2787444720 @default.
- W4225533124 cites W2883377287 @default.
- W4225533124 cites W2885421136 @default.
- W4225533124 cites W2943171126 @default.
- W4225533124 cites W2943317407 @default.
- W4225533124 cites W3028066085 @default.
- W4225533124 cites W3041023980 @default.
- W4225533124 cites W3090304399 @default.
- W4225533124 cites W3105943120 @default.
- W4225533124 cites W3166420679 @default.
- W4225533124 cites W4210638291 @default.
- W4225533124 cites W4234901125 @default.
- W4225533124 cites W969509775 @default.
- W4225533124 doi "https://doi.org/10.1029/2021gh000585" @default.
- W4225533124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35340282" @default.
- W4225533124 hasPublicationYear "2022" @default.
- W4225533124 type Work @default.
- W4225533124 citedByCount "3" @default.
- W4225533124 countsByYear W42255331242022 @default.
- W4225533124 countsByYear W42255331242023 @default.
- W4225533124 crossrefType "journal-article" @default.
- W4225533124 hasAuthorship W4225533124A5004719855 @default.
- W4225533124 hasAuthorship W4225533124A5016283076 @default.
- W4225533124 hasAuthorship W4225533124A5021829777 @default.
- W4225533124 hasAuthorship W4225533124A5091732967 @default.
- W4225533124 hasBestOaLocation W42255331241 @default.
- W4225533124 hasConcept C118518473 @default.
- W4225533124 hasConcept C127413603 @default.
- W4225533124 hasConcept C166957645 @default.
- W4225533124 hasConcept C187320778 @default.
- W4225533124 hasConcept C205649164 @default.
- W4225533124 hasConcept C39432304 @default.
- W4225533124 hasConcept C524765639 @default.
- W4225533124 hasConcept C58640448 @default.
- W4225533124 hasConcept C71924100 @default.
- W4225533124 hasConcept C76177295 @default.
- W4225533124 hasConcept C76886044 @default.
- W4225533124 hasConcept C9770341 @default.
- W4225533124 hasConcept C99454951 @default.
- W4225533124 hasConceptScore W4225533124C118518473 @default.
- W4225533124 hasConceptScore W4225533124C127413603 @default.
- W4225533124 hasConceptScore W4225533124C166957645 @default.
- W4225533124 hasConceptScore W4225533124C187320778 @default.
- W4225533124 hasConceptScore W4225533124C205649164 @default.
- W4225533124 hasConceptScore W4225533124C39432304 @default.
- W4225533124 hasConceptScore W4225533124C524765639 @default.
- W4225533124 hasConceptScore W4225533124C58640448 @default.
- W4225533124 hasConceptScore W4225533124C71924100 @default.
- W4225533124 hasConceptScore W4225533124C76177295 @default.
- W4225533124 hasConceptScore W4225533124C76886044 @default.
- W4225533124 hasConceptScore W4225533124C9770341 @default.
- W4225533124 hasConceptScore W4225533124C99454951 @default.
- W4225533124 hasFunder F4320306101 @default.
- W4225533124 hasIssue "3" @default.
- W4225533124 hasLocation W42255331241 @default.
- W4225533124 hasLocation W42255331242 @default.
- W4225533124 hasLocation W42255331243 @default.
- W4225533124 hasOpenAccess W4225533124 @default.
- W4225533124 hasPrimaryLocation W42255331241 @default.
- W4225533124 hasRelatedWork W1551214244 @default.
- W4225533124 hasRelatedWork W1929711488 @default.