Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225533609> ?p ?o ?g. }
- W4225533609 abstract "Student dropout still becomes a critical problem in education. Educational Data Mining (EDM) can bring potential impact to support academic institution’s goals in making academic decisions, such as regulation renewal, rule enforcement, or academic process improvement. The sooner at-risk students can be identified, the earlier institution members can provide necessary treatments, thus prevent them from dropout and increase the student retention rate. This study performs a comprehensive literature review of student performance prediction using EDM techniques, including various research from 2002 to 2021. Our study is aimed to provide a comprehensive review of recent studies based on student performance prediction tasks, predictor variables, methods, accuracy, and tools used in previous works of student performance prediction. Performing student performance prediction in an academic institution can be helpful to provide the student performance mitigation mechanism because it can be managed earlier by the management to decrease the student dropout rate." @default.
- W4225533609 created "2022-05-05" @default.
- W4225533609 creator A5028640806 @default.
- W4225533609 creator A5075764001 @default.
- W4225533609 creator A5079804283 @default.
- W4225533609 date "2022-01-01" @default.
- W4225533609 modified "2023-10-01" @default.
- W4225533609 title "Student performance prediction in higher education: A comprehensive review" @default.
- W4225533609 cites W1502991139 @default.
- W4225533609 cites W1589929313 @default.
- W4225533609 cites W1838166440 @default.
- W4225533609 cites W1858716294 @default.
- W4225533609 cites W1970881937 @default.
- W4225533609 cites W1970886876 @default.
- W4225533609 cites W1975728247 @default.
- W4225533609 cites W1988697879 @default.
- W4225533609 cites W2013780712 @default.
- W4225533609 cites W2100525561 @default.
- W4225533609 cites W2106717332 @default.
- W4225533609 cites W2116426155 @default.
- W4225533609 cites W2145193316 @default.
- W4225533609 cites W2145445683 @default.
- W4225533609 cites W2150364563 @default.
- W4225533609 cites W2218710975 @default.
- W4225533609 cites W2255539840 @default.
- W4225533609 cites W2289034481 @default.
- W4225533609 cites W2518725484 @default.
- W4225533609 cites W2521491036 @default.
- W4225533609 cites W2522356742 @default.
- W4225533609 cites W2536489451 @default.
- W4225533609 cites W2539583929 @default.
- W4225533609 cites W2563345517 @default.
- W4225533609 cites W2572386335 @default.
- W4225533609 cites W2601110622 @default.
- W4225533609 cites W2617300785 @default.
- W4225533609 cites W2627057359 @default.
- W4225533609 cites W2734482622 @default.
- W4225533609 cites W2761700447 @default.
- W4225533609 cites W2782634542 @default.
- W4225533609 cites W2792242630 @default.
- W4225533609 cites W2792994979 @default.
- W4225533609 cites W2802688825 @default.
- W4225533609 cites W2811374032 @default.
- W4225533609 cites W2817361823 @default.
- W4225533609 cites W2883445323 @default.
- W4225533609 cites W2884682579 @default.
- W4225533609 cites W2887783384 @default.
- W4225533609 cites W2905931716 @default.
- W4225533609 cites W2909913588 @default.
- W4225533609 cites W2911048623 @default.
- W4225533609 cites W2916446848 @default.
- W4225533609 cites W2925920644 @default.
- W4225533609 cites W2965393183 @default.
- W4225533609 cites W3016267527 @default.
- W4225533609 cites W3118164373 @default.
- W4225533609 cites W3133477053 @default.
- W4225533609 doi "https://doi.org/10.1063/5.0080187" @default.
- W4225533609 hasPublicationYear "2022" @default.
- W4225533609 type Work @default.
- W4225533609 citedByCount "3" @default.
- W4225533609 countsByYear W42255336092022 @default.
- W4225533609 countsByYear W42255336092023 @default.
- W4225533609 crossrefType "proceedings-article" @default.
- W4225533609 hasAuthorship W4225533609A5028640806 @default.
- W4225533609 hasAuthorship W4225533609A5075764001 @default.
- W4225533609 hasAuthorship W4225533609A5079804283 @default.
- W4225533609 hasBestOaLocation W42255336092 @default.
- W4225533609 hasConcept C111919701 @default.
- W4225533609 hasConcept C119857082 @default.
- W4225533609 hasConcept C127413603 @default.
- W4225533609 hasConcept C145420912 @default.
- W4225533609 hasConcept C15744967 @default.
- W4225533609 hasConcept C161191863 @default.
- W4225533609 hasConcept C17744445 @default.
- W4225533609 hasConcept C199539241 @default.
- W4225533609 hasConcept C21547014 @default.
- W4225533609 hasConcept C2776145597 @default.
- W4225533609 hasConcept C2778915421 @default.
- W4225533609 hasConcept C2779777834 @default.
- W4225533609 hasConcept C2780510313 @default.
- W4225533609 hasConcept C2781206393 @default.
- W4225533609 hasConcept C2986206625 @default.
- W4225533609 hasConcept C2992478610 @default.
- W4225533609 hasConcept C41008148 @default.
- W4225533609 hasConcept C98045186 @default.
- W4225533609 hasConceptScore W4225533609C111919701 @default.
- W4225533609 hasConceptScore W4225533609C119857082 @default.
- W4225533609 hasConceptScore W4225533609C127413603 @default.
- W4225533609 hasConceptScore W4225533609C145420912 @default.
- W4225533609 hasConceptScore W4225533609C15744967 @default.
- W4225533609 hasConceptScore W4225533609C161191863 @default.
- W4225533609 hasConceptScore W4225533609C17744445 @default.
- W4225533609 hasConceptScore W4225533609C199539241 @default.
- W4225533609 hasConceptScore W4225533609C21547014 @default.
- W4225533609 hasConceptScore W4225533609C2776145597 @default.
- W4225533609 hasConceptScore W4225533609C2778915421 @default.
- W4225533609 hasConceptScore W4225533609C2779777834 @default.
- W4225533609 hasConceptScore W4225533609C2780510313 @default.
- W4225533609 hasConceptScore W4225533609C2781206393 @default.
- W4225533609 hasConceptScore W4225533609C2986206625 @default.