Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225536339> ?p ?o ?g. }
- W4225536339 endingPage "8976" @default.
- W4225536339 startingPage "8967" @default.
- W4225536339 abstract "The high computational capability provided by a data center makes it possible to solve complex manufacturing issues and carry out large-scale collaborative cloud manufacturing. Accurately, real-time estimation of the power required by a data center can help resource providers predict the total power consumption and improve resource utilization. To enhance the accuracy of server power models, we propose a real-time energy consumption prediction method called IECL that combines the support vector machine, random forest, and grid search algorithms. The random forest algorithm is used to screen the input parameters of the model, while the grid search method is used to optimize the hyperparameters. The error confidence interval is also leveraged to describe the uncertainty in the energy consumption by the server. Our experimental results suggest that the average absolute error for different workloads is less than 1.4% with benchmark models." @default.
- W4225536339 created "2022-05-05" @default.
- W4225536339 creator A5022893278 @default.
- W4225536339 creator A5026624461 @default.
- W4225536339 creator A5065265823 @default.
- W4225536339 creator A5081333552 @default.
- W4225536339 date "2022-12-01" @default.
- W4225536339 modified "2023-10-17" @default.
- W4225536339 title "IECL: An Intelligent Energy Consumption Model for Cloud Manufacturing" @default.
- W4225536339 cites W1966707129 @default.
- W4225536339 cites W2033464677 @default.
- W4225536339 cites W2053410603 @default.
- W4225536339 cites W2610314771 @default.
- W4225536339 cites W2750846724 @default.
- W4225536339 cites W2757140470 @default.
- W4225536339 cites W2769515370 @default.
- W4225536339 cites W2803397358 @default.
- W4225536339 cites W2907770500 @default.
- W4225536339 cites W2923007495 @default.
- W4225536339 cites W2937791656 @default.
- W4225536339 cites W2951142264 @default.
- W4225536339 cites W2964115256 @default.
- W4225536339 cites W3011000746 @default.
- W4225536339 cites W3026127427 @default.
- W4225536339 cites W3033688252 @default.
- W4225536339 cites W3034427160 @default.
- W4225536339 cites W3096848606 @default.
- W4225536339 cites W3110163562 @default.
- W4225536339 cites W3120338070 @default.
- W4225536339 cites W3124695286 @default.
- W4225536339 cites W3127690492 @default.
- W4225536339 cites W3137986712 @default.
- W4225536339 cites W3156772560 @default.
- W4225536339 cites W3188789063 @default.
- W4225536339 cites W3198160199 @default.
- W4225536339 doi "https://doi.org/10.1109/tii.2022.3165085" @default.
- W4225536339 hasPublicationYear "2022" @default.
- W4225536339 type Work @default.
- W4225536339 citedByCount "9" @default.
- W4225536339 countsByYear W42255363392022 @default.
- W4225536339 countsByYear W42255363392023 @default.
- W4225536339 crossrefType "journal-article" @default.
- W4225536339 hasAuthorship W4225536339A5022893278 @default.
- W4225536339 hasAuthorship W4225536339A5026624461 @default.
- W4225536339 hasAuthorship W4225536339A5065265823 @default.
- W4225536339 hasAuthorship W4225536339A5081333552 @default.
- W4225536339 hasBestOaLocation W42255363392 @default.
- W4225536339 hasConcept C10485038 @default.
- W4225536339 hasConcept C111919701 @default.
- W4225536339 hasConcept C119599485 @default.
- W4225536339 hasConcept C120314980 @default.
- W4225536339 hasConcept C12267149 @default.
- W4225536339 hasConcept C124101348 @default.
- W4225536339 hasConcept C127413603 @default.
- W4225536339 hasConcept C13280743 @default.
- W4225536339 hasConcept C153740404 @default.
- W4225536339 hasConcept C154945302 @default.
- W4225536339 hasConcept C169258074 @default.
- W4225536339 hasConcept C185798385 @default.
- W4225536339 hasConcept C187691185 @default.
- W4225536339 hasConcept C205649164 @default.
- W4225536339 hasConcept C2524010 @default.
- W4225536339 hasConcept C2780165032 @default.
- W4225536339 hasConcept C33923547 @default.
- W4225536339 hasConcept C41008148 @default.
- W4225536339 hasConcept C79403827 @default.
- W4225536339 hasConcept C79974875 @default.
- W4225536339 hasConcept C8642999 @default.
- W4225536339 hasConceptScore W4225536339C10485038 @default.
- W4225536339 hasConceptScore W4225536339C111919701 @default.
- W4225536339 hasConceptScore W4225536339C119599485 @default.
- W4225536339 hasConceptScore W4225536339C120314980 @default.
- W4225536339 hasConceptScore W4225536339C12267149 @default.
- W4225536339 hasConceptScore W4225536339C124101348 @default.
- W4225536339 hasConceptScore W4225536339C127413603 @default.
- W4225536339 hasConceptScore W4225536339C13280743 @default.
- W4225536339 hasConceptScore W4225536339C153740404 @default.
- W4225536339 hasConceptScore W4225536339C154945302 @default.
- W4225536339 hasConceptScore W4225536339C169258074 @default.
- W4225536339 hasConceptScore W4225536339C185798385 @default.
- W4225536339 hasConceptScore W4225536339C187691185 @default.
- W4225536339 hasConceptScore W4225536339C205649164 @default.
- W4225536339 hasConceptScore W4225536339C2524010 @default.
- W4225536339 hasConceptScore W4225536339C2780165032 @default.
- W4225536339 hasConceptScore W4225536339C33923547 @default.
- W4225536339 hasConceptScore W4225536339C41008148 @default.
- W4225536339 hasConceptScore W4225536339C79403827 @default.
- W4225536339 hasConceptScore W4225536339C79974875 @default.
- W4225536339 hasConceptScore W4225536339C8642999 @default.
- W4225536339 hasFunder F4320320300 @default.
- W4225536339 hasIssue "12" @default.
- W4225536339 hasLocation W42255363391 @default.
- W4225536339 hasLocation W42255363392 @default.
- W4225536339 hasOpenAccess W4225536339 @default.
- W4225536339 hasPrimaryLocation W42255363391 @default.
- W4225536339 hasRelatedWork W1974336862 @default.
- W4225536339 hasRelatedWork W2953665647 @default.
- W4225536339 hasRelatedWork W2954882791 @default.