Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225537613> ?p ?o ?g. }
- W4225537613 endingPage "19284" @default.
- W4225537613 startingPage "19272" @default.
- W4225537613 abstract "Traffic accidents caused by distracted drivers account for a large proportion of traffic accidents each year, and monitoring the driving state of drivers to avoid traffic accidents caused by distracted driving has become a very important research direction. At present, the field of driver distraction detection mainly adopts supervised learning methods, which have problems such as poor generalization ability, large labeling cost, and weak artificial intelligence. This paper is oriented toward driver distraction fine-grained detection and innovatively proposes a new unsupervised deep learning algorithm, which is referred to as UDL, to achieve a more human-like level of intelligence. First, we build a new unsupervised deep learning algorithm; furthermore, we integrate the multilayer perceptron (MLP) architecture to build a new backbone and projection head to strengthen feature extraction capabilities; and finally, a new loss function based on contrast learning and a stop-gradient strategy is designed to guide the model to learn more robust features. The comparison results on large-scale driver distraction detection datasets show that our UDL method can accurately detect driver distraction without labels and exhibits excellent generalization performance with a linear evaluation accuracy of 97.38%; In addition, after fine-tuning with fewer labels, our UDL method can achieve superior performance close to state-of-the-art supervised learning methods, achieving 99.07% accuracy after fine-tuning using only 50% of the labeled data, which greatly reduces the cost and limitations of manual annotation." @default.
- W4225537613 created "2022-05-05" @default.
- W4225537613 creator A5005215808 @default.
- W4225537613 creator A5038632244 @default.
- W4225537613 creator A5039615242 @default.
- W4225537613 creator A5071941142 @default.
- W4225537613 creator A5079266016 @default.
- W4225537613 creator A5083333420 @default.
- W4225537613 creator A5083581319 @default.
- W4225537613 creator A5087404367 @default.
- W4225537613 date "2022-10-01" @default.
- W4225537613 modified "2023-09-30" @default.
- W4225537613 title "A New Unsupervised Deep Learning Algorithm for Fine-Grained Detection of Driver Distraction" @default.
- W4225537613 cites W2052086489 @default.
- W4225537613 cites W2097117768 @default.
- W4225537613 cites W2108598243 @default.
- W4225537613 cites W2161969291 @default.
- W4225537613 cites W2164598857 @default.
- W4225537613 cites W2172717914 @default.
- W4225537613 cites W2183341477 @default.
- W4225537613 cites W2194775991 @default.
- W4225537613 cites W2395611524 @default.
- W4225537613 cites W2549139847 @default.
- W4225537613 cites W2791101340 @default.
- W4225537613 cites W2798991696 @default.
- W4225537613 cites W2889178707 @default.
- W4225537613 cites W2890157139 @default.
- W4225537613 cites W2897940545 @default.
- W4225537613 cites W2904249184 @default.
- W4225537613 cites W2908986800 @default.
- W4225537613 cites W2912346386 @default.
- W4225537613 cites W2928165649 @default.
- W4225537613 cites W2952934820 @default.
- W4225537613 cites W3026578319 @default.
- W4225537613 cites W3031524693 @default.
- W4225537613 cites W3035524453 @default.
- W4225537613 cites W3089356117 @default.
- W4225537613 cites W3124956299 @default.
- W4225537613 cites W3138516171 @default.
- W4225537613 cites W3139457828 @default.
- W4225537613 cites W3145450063 @default.
- W4225537613 cites W3153065833 @default.
- W4225537613 cites W3171007011 @default.
- W4225537613 cites W3175829748 @default.
- W4225537613 cites W4214642259 @default.
- W4225537613 doi "https://doi.org/10.1109/tits.2022.3166275" @default.
- W4225537613 hasPublicationYear "2022" @default.
- W4225537613 type Work @default.
- W4225537613 citedByCount "4" @default.
- W4225537613 countsByYear W42255376132022 @default.
- W4225537613 countsByYear W42255376132023 @default.
- W4225537613 crossrefType "journal-article" @default.
- W4225537613 hasAuthorship W4225537613A5005215808 @default.
- W4225537613 hasAuthorship W4225537613A5038632244 @default.
- W4225537613 hasAuthorship W4225537613A5039615242 @default.
- W4225537613 hasAuthorship W4225537613A5071941142 @default.
- W4225537613 hasAuthorship W4225537613A5079266016 @default.
- W4225537613 hasAuthorship W4225537613A5083333420 @default.
- W4225537613 hasAuthorship W4225537613A5083581319 @default.
- W4225537613 hasAuthorship W4225537613A5087404367 @default.
- W4225537613 hasConcept C108583219 @default.
- W4225537613 hasConcept C119857082 @default.
- W4225537613 hasConcept C134306372 @default.
- W4225537613 hasConcept C154945302 @default.
- W4225537613 hasConcept C169760540 @default.
- W4225537613 hasConcept C177148314 @default.
- W4225537613 hasConcept C179717631 @default.
- W4225537613 hasConcept C2776378700 @default.
- W4225537613 hasConcept C2776465824 @default.
- W4225537613 hasConcept C33923547 @default.
- W4225537613 hasConcept C41008148 @default.
- W4225537613 hasConcept C50644808 @default.
- W4225537613 hasConcept C8038995 @default.
- W4225537613 hasConcept C86803240 @default.
- W4225537613 hasConceptScore W4225537613C108583219 @default.
- W4225537613 hasConceptScore W4225537613C119857082 @default.
- W4225537613 hasConceptScore W4225537613C134306372 @default.
- W4225537613 hasConceptScore W4225537613C154945302 @default.
- W4225537613 hasConceptScore W4225537613C169760540 @default.
- W4225537613 hasConceptScore W4225537613C177148314 @default.
- W4225537613 hasConceptScore W4225537613C179717631 @default.
- W4225537613 hasConceptScore W4225537613C2776378700 @default.
- W4225537613 hasConceptScore W4225537613C2776465824 @default.
- W4225537613 hasConceptScore W4225537613C33923547 @default.
- W4225537613 hasConceptScore W4225537613C41008148 @default.
- W4225537613 hasConceptScore W4225537613C50644808 @default.
- W4225537613 hasConceptScore W4225537613C8038995 @default.
- W4225537613 hasConceptScore W4225537613C86803240 @default.
- W4225537613 hasFunder F4320321001 @default.
- W4225537613 hasFunder F4320321543 @default.
- W4225537613 hasFunder F4320334897 @default.
- W4225537613 hasIssue "10" @default.
- W4225537613 hasLocation W42255376131 @default.
- W4225537613 hasOpenAccess W4225537613 @default.
- W4225537613 hasPrimaryLocation W42255376131 @default.
- W4225537613 hasRelatedWork W2597787948 @default.
- W4225537613 hasRelatedWork W3123344745 @default.
- W4225537613 hasRelatedWork W3192794374 @default.