Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225538110> ?p ?o ?g. }
- W4225538110 endingPage "23" @default.
- W4225538110 startingPage "1" @default.
- W4225538110 abstract "Efficient resource planning is recognized as one of the key enablers making the large-scale deployment of next-generation wireless networks available for mass usage. Modelling, planning, and software simulation tools reduce both the time needed and costs of their tuning and realization. In this paper, we propose a model-driven framework for proactive network planning relying on synergy of deep learning and multiobjective optimization. The predictions about service demand and energy consumption are taken into account. Also, the impact of degradations resulting from fading and cochannel interference (CCI) effects is also considered. The optimization task is treated as a component allocation problem (CAP) aiming to find the best possible base station allocation for the considered smart city locations with respect to performance and service demand constraints. The goal is to maximize Quality of Service (QoS) while keeping the costs and energy consumption as low as possible. The adoption of a model-driven approach in combination with model-to-model transformations and automated code generation does not only reduce the complexity, making experimentation more rapid and convenient at the same time, but also increase the overall reusability and expandability of the planning tool. According to the obtained results, the proposed solution seems to be promising not only due to achieved benefits but also regarding the execution time, which is shorter than that achieved in our previous works, especially for larger distances. Further, we adopt model-based representation of handover strategies within the planning tool, enabling examination of the dynamic behavior of user-created plan, which is not exploited in other similar works. The main contributions of the paper are (1) wireless network planning (WNP) metamodel, a modelling notation for network plans; (2) model-to-model transformation for conversion of WNP to generalized CAP metamodel; (3) prediction problem (PP) metamodel, high-level abstraction for representation of prediction-related regression and classification problems; (4) code generator that creates PyTorch neural network from PP representation; (5) service demand and energy consumption prediction modules performing regression; (6) multiobjective optimization model for base station allocation; (7) Handover Strategy (HS) metamodel used for description of dynamic aspects and adaptability relevant to network planning." @default.
- W4225538110 created "2022-05-05" @default.
- W4225538110 creator A5039550937 @default.
- W4225538110 creator A5067093386 @default.
- W4225538110 creator A5088104146 @default.
- W4225538110 date "2022-04-08" @default.
- W4225538110 modified "2023-10-04" @default.
- W4225538110 title "Model-Driven Approach to Fading-Aware Wireless Network Planning Leveraging Multiobjective Optimization and Deep Learning" @default.
- W4225538110 cites W1491783759 @default.
- W4225538110 cites W1496173420 @default.
- W4225538110 cites W1576718945 @default.
- W4225538110 cites W1965979806 @default.
- W4225538110 cites W1988035518 @default.
- W4225538110 cites W1991056455 @default.
- W4225538110 cites W1999780286 @default.
- W4225538110 cites W2005190351 @default.
- W4225538110 cites W2024267771 @default.
- W4225538110 cites W2042200659 @default.
- W4225538110 cites W2046695216 @default.
- W4225538110 cites W2059504809 @default.
- W4225538110 cites W2062404830 @default.
- W4225538110 cites W2072708272 @default.
- W4225538110 cites W2074149929 @default.
- W4225538110 cites W2080097390 @default.
- W4225538110 cites W2090062333 @default.
- W4225538110 cites W2097398761 @default.
- W4225538110 cites W2097736984 @default.
- W4225538110 cites W2100359132 @default.
- W4225538110 cites W2100687510 @default.
- W4225538110 cites W2131672552 @default.
- W4225538110 cites W2132675551 @default.
- W4225538110 cites W2135077618 @default.
- W4225538110 cites W2136138511 @default.
- W4225538110 cites W2137348941 @default.
- W4225538110 cites W2138825100 @default.
- W4225538110 cites W2145043151 @default.
- W4225538110 cites W2147063369 @default.
- W4225538110 cites W2147179287 @default.
- W4225538110 cites W2153904494 @default.
- W4225538110 cites W2164599584 @default.
- W4225538110 cites W2274510954 @default.
- W4225538110 cites W2344738242 @default.
- W4225538110 cites W2488298377 @default.
- W4225538110 cites W2489762097 @default.
- W4225538110 cites W2505100285 @default.
- W4225538110 cites W2521300572 @default.
- W4225538110 cites W2548529796 @default.
- W4225538110 cites W2548905261 @default.
- W4225538110 cites W2561351717 @default.
- W4225538110 cites W2587315364 @default.
- W4225538110 cites W2736907342 @default.
- W4225538110 cites W2768071387 @default.
- W4225538110 cites W2772421165 @default.
- W4225538110 cites W2774020526 @default.
- W4225538110 cites W2775698417 @default.
- W4225538110 cites W2790025453 @default.
- W4225538110 cites W2897824881 @default.
- W4225538110 cites W2900901824 @default.
- W4225538110 cites W2904743829 @default.
- W4225538110 cites W2907194911 @default.
- W4225538110 cites W2909249800 @default.
- W4225538110 cites W2914262925 @default.
- W4225538110 cites W2936000643 @default.
- W4225538110 cites W2943241422 @default.
- W4225538110 cites W2967592088 @default.
- W4225538110 cites W2972203243 @default.
- W4225538110 cites W2980109895 @default.
- W4225538110 cites W2980497881 @default.
- W4225538110 cites W2981096252 @default.
- W4225538110 cites W2990724922 @default.
- W4225538110 cites W3006564460 @default.
- W4225538110 cites W3011515011 @default.
- W4225538110 cites W3021307731 @default.
- W4225538110 cites W3021613070 @default.
- W4225538110 cites W3022171745 @default.
- W4225538110 cites W3025061635 @default.
- W4225538110 cites W3025884205 @default.
- W4225538110 cites W3027661471 @default.
- W4225538110 cites W3037618509 @default.
- W4225538110 cites W3039510243 @default.
- W4225538110 cites W3046950196 @default.
- W4225538110 cites W3047659231 @default.
- W4225538110 cites W3050393128 @default.
- W4225538110 cites W3086256550 @default.
- W4225538110 cites W3094239405 @default.
- W4225538110 cites W3099472280 @default.
- W4225538110 cites W3107605638 @default.
- W4225538110 cites W3126130167 @default.
- W4225538110 cites W3127447975 @default.
- W4225538110 cites W3135855932 @default.
- W4225538110 cites W3142457648 @default.
- W4225538110 cites W3147547833 @default.
- W4225538110 cites W3156957655 @default.
- W4225538110 cites W3176830951 @default.
- W4225538110 cites W3191167321 @default.
- W4225538110 cites W3194178452 @default.
- W4225538110 cites W3194834321 @default.
- W4225538110 cites W3204400253 @default.