Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225540241> ?p ?o ?g. }
- W4225540241 endingPage "27" @default.
- W4225540241 startingPage "1" @default.
- W4225540241 abstract "Short-term rainfall forecasting plays a critical role in meteorology, hydrology, and other related areas. Currently, data-driven approaches have made considerable progress in rainfall forecasting. However, these approaches suffer from the following major drawbacks. First, they do not accommodate a reasonable and effective model to mathematically represent the complete changes of a rainfall block. Second, scale division rainfall forecasting is overlooked in existing literature. Third, generalization is not well validated in these approaches. To address these issues, we propose a novel Regional Scale Division Forecasting model using attention mechanism and long short term memory network (RSDF-AM-LSTM) for short-term and scale-division rainfall forecasting. The forecasting model can take full account of the regional characteristics of the rainfall blocks. It is established by employing a method similar to image evolution. The approach also provides a reasonable and effective model to formulate the complete changes of rainfall blocks, including newborn, splitting, strengthening, weakening, and merging. A deep learning algorithm based on AM-LSTM is proposed to forecast the change of rainfall block. AM-LSTM describes temporal and spatial association among four parallel LSTMs through AM. The rainfall data used in our experiments are obtained from 3,200 meteorological stations in and around China. The experimental results show that RSDF-AM-LSTM outperforms two popular atmospheric models and other traditional machine learning approaches." @default.
- W4225540241 created "2022-05-05" @default.
- W4225540241 creator A5005267734 @default.
- W4225540241 creator A5026694879 @default.
- W4225540241 creator A5030409288 @default.
- W4225540241 creator A5065521868 @default.
- W4225540241 creator A5068595048 @default.
- W4225540241 date "2021-11-30" @default.
- W4225540241 modified "2023-10-16" @default.
- W4225540241 title "RSDF-AM-LSTM: Regional Scale Division Rainfall Forecasting Using Attention and LSTM" @default.
- W4225540241 cites W1422238814 @default.
- W4225540241 cites W1591760165 @default.
- W4225540241 cites W1964425467 @default.
- W4225540241 cites W1980160042 @default.
- W4225540241 cites W1995427974 @default.
- W4225540241 cites W2011787805 @default.
- W4225540241 cites W2033310064 @default.
- W4225540241 cites W2035930921 @default.
- W4225540241 cites W2044893557 @default.
- W4225540241 cites W2048897976 @default.
- W4225540241 cites W2076063813 @default.
- W4225540241 cites W2088492460 @default.
- W4225540241 cites W2092556113 @default.
- W4225540241 cites W2136848157 @default.
- W4225540241 cites W2147800946 @default.
- W4225540241 cites W2179093417 @default.
- W4225540241 cites W2257979135 @default.
- W4225540241 cites W2267272611 @default.
- W4225540241 cites W2295038166 @default.
- W4225540241 cites W2326699005 @default.
- W4225540241 cites W2338068721 @default.
- W4225540241 cites W2604271147 @default.
- W4225540241 cites W2773055204 @default.
- W4225540241 cites W2791488060 @default.
- W4225540241 cites W2810006455 @default.
- W4225540241 cites W2890034837 @default.
- W4225540241 cites W2919115771 @default.
- W4225540241 cites W586775178 @default.
- W4225540241 doi "https://doi.org/10.1145/3498333" @default.
- W4225540241 hasPublicationYear "2021" @default.
- W4225540241 type Work @default.
- W4225540241 citedByCount "0" @default.
- W4225540241 crossrefType "journal-article" @default.
- W4225540241 hasAuthorship W4225540241A5005267734 @default.
- W4225540241 hasAuthorship W4225540241A5026694879 @default.
- W4225540241 hasAuthorship W4225540241A5030409288 @default.
- W4225540241 hasAuthorship W4225540241A5065521868 @default.
- W4225540241 hasAuthorship W4225540241A5068595048 @default.
- W4225540241 hasBestOaLocation W42255402411 @default.
- W4225540241 hasConcept C108583219 @default.
- W4225540241 hasConcept C119857082 @default.
- W4225540241 hasConcept C121332964 @default.
- W4225540241 hasConcept C127313418 @default.
- W4225540241 hasConcept C133488467 @default.
- W4225540241 hasConcept C134306372 @default.
- W4225540241 hasConcept C147168706 @default.
- W4225540241 hasConcept C154945302 @default.
- W4225540241 hasConcept C177148314 @default.
- W4225540241 hasConcept C205649164 @default.
- W4225540241 hasConcept C2524010 @default.
- W4225540241 hasConcept C2777210771 @default.
- W4225540241 hasConcept C2778755073 @default.
- W4225540241 hasConcept C33923547 @default.
- W4225540241 hasConcept C41008148 @default.
- W4225540241 hasConcept C49204034 @default.
- W4225540241 hasConcept C50644808 @default.
- W4225540241 hasConcept C58640448 @default.
- W4225540241 hasConcept C60798267 @default.
- W4225540241 hasConcept C61797465 @default.
- W4225540241 hasConcept C62520636 @default.
- W4225540241 hasConcept C94375191 @default.
- W4225540241 hasConceptScore W4225540241C108583219 @default.
- W4225540241 hasConceptScore W4225540241C119857082 @default.
- W4225540241 hasConceptScore W4225540241C121332964 @default.
- W4225540241 hasConceptScore W4225540241C127313418 @default.
- W4225540241 hasConceptScore W4225540241C133488467 @default.
- W4225540241 hasConceptScore W4225540241C134306372 @default.
- W4225540241 hasConceptScore W4225540241C147168706 @default.
- W4225540241 hasConceptScore W4225540241C154945302 @default.
- W4225540241 hasConceptScore W4225540241C177148314 @default.
- W4225540241 hasConceptScore W4225540241C205649164 @default.
- W4225540241 hasConceptScore W4225540241C2524010 @default.
- W4225540241 hasConceptScore W4225540241C2777210771 @default.
- W4225540241 hasConceptScore W4225540241C2778755073 @default.
- W4225540241 hasConceptScore W4225540241C33923547 @default.
- W4225540241 hasConceptScore W4225540241C41008148 @default.
- W4225540241 hasConceptScore W4225540241C49204034 @default.
- W4225540241 hasConceptScore W4225540241C50644808 @default.
- W4225540241 hasConceptScore W4225540241C58640448 @default.
- W4225540241 hasConceptScore W4225540241C60798267 @default.
- W4225540241 hasConceptScore W4225540241C61797465 @default.
- W4225540241 hasConceptScore W4225540241C62520636 @default.
- W4225540241 hasConceptScore W4225540241C94375191 @default.
- W4225540241 hasFunder F4320322769 @default.
- W4225540241 hasFunder F4320335787 @default.
- W4225540241 hasIssue "4" @default.
- W4225540241 hasLocation W42255402411 @default.
- W4225540241 hasOpenAccess W4225540241 @default.