Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225540782> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4225540782 endingPage "1064" @default.
- W4225540782 startingPage "1064" @default.
- W4225540782 abstract "The task of seismic data interpretation is a time-consuming and uncertain process. Machine learning tools can help to build a shortcut between raw seismic data and reservoir characteristics of interest. Recently, techniques involving convolutional neural networks have started to gain momentum. Convolutional neural networks are particularly efficient at pattern recognition within images, and this is why they are suitable for seismic facies classification and interpretation tasks. We experimented with three different architectures based on convolutional layers and compared them with different synthetic and field datasets in terms of quality of the seismic interpretation results and computational efficiency. The architectures used in our study were three deep fully convolutional architectures: a 3D convolutional network with a fully connected head; a 2D fully convolutional network, and U-Net. We found the U-Net architecture to be both robust and the fastest when performing classification at the prediction stage. The 3D convolutional model with a fully connected head was the slowest, while a fully convolutional model was unstable in its predictions." @default.
- W4225540782 created "2022-05-05" @default.
- W4225540782 creator A5006651636 @default.
- W4225540782 creator A5013088513 @default.
- W4225540782 creator A5030836178 @default.
- W4225540782 creator A5065857785 @default.
- W4225540782 date "2022-01-31" @default.
- W4225540782 modified "2023-09-25" @default.
- W4225540782 title "Shape Carving Methods of Geologic Body Interpretation from Seismic Data Based on Deep Learning" @default.
- W4225540782 cites W1910501430 @default.
- W4225540782 cites W201967368 @default.
- W4225540782 cites W2029158756 @default.
- W4225540782 cites W2104778597 @default.
- W4225540782 cites W2168741563 @default.
- W4225540782 cites W2512297284 @default.
- W4225540782 cites W2807914764 @default.
- W4225540782 cites W2912141339 @default.
- W4225540782 cites W2982479281 @default.
- W4225540782 doi "https://doi.org/10.3390/en15031064" @default.
- W4225540782 hasPublicationYear "2022" @default.
- W4225540782 type Work @default.
- W4225540782 citedByCount "1" @default.
- W4225540782 countsByYear W42255407822022 @default.
- W4225540782 crossrefType "journal-article" @default.
- W4225540782 hasAuthorship W4225540782A5006651636 @default.
- W4225540782 hasAuthorship W4225540782A5013088513 @default.
- W4225540782 hasAuthorship W4225540782A5030836178 @default.
- W4225540782 hasAuthorship W4225540782A5065857785 @default.
- W4225540782 hasBestOaLocation W42255407821 @default.
- W4225540782 hasConcept C108583219 @default.
- W4225540782 hasConcept C111919701 @default.
- W4225540782 hasConcept C119857082 @default.
- W4225540782 hasConcept C153180895 @default.
- W4225540782 hasConcept C154945302 @default.
- W4225540782 hasConcept C199360897 @default.
- W4225540782 hasConcept C202444582 @default.
- W4225540782 hasConcept C33923547 @default.
- W4225540782 hasConcept C41008148 @default.
- W4225540782 hasConcept C527412718 @default.
- W4225540782 hasConcept C81363708 @default.
- W4225540782 hasConcept C9652623 @default.
- W4225540782 hasConcept C98045186 @default.
- W4225540782 hasConceptScore W4225540782C108583219 @default.
- W4225540782 hasConceptScore W4225540782C111919701 @default.
- W4225540782 hasConceptScore W4225540782C119857082 @default.
- W4225540782 hasConceptScore W4225540782C153180895 @default.
- W4225540782 hasConceptScore W4225540782C154945302 @default.
- W4225540782 hasConceptScore W4225540782C199360897 @default.
- W4225540782 hasConceptScore W4225540782C202444582 @default.
- W4225540782 hasConceptScore W4225540782C33923547 @default.
- W4225540782 hasConceptScore W4225540782C41008148 @default.
- W4225540782 hasConceptScore W4225540782C527412718 @default.
- W4225540782 hasConceptScore W4225540782C81363708 @default.
- W4225540782 hasConceptScore W4225540782C9652623 @default.
- W4225540782 hasConceptScore W4225540782C98045186 @default.
- W4225540782 hasIssue "3" @default.
- W4225540782 hasLocation W42255407821 @default.
- W4225540782 hasLocation W42255407822 @default.
- W4225540782 hasOpenAccess W4225540782 @default.
- W4225540782 hasPrimaryLocation W42255407821 @default.
- W4225540782 hasRelatedWork W2731899572 @default.
- W4225540782 hasRelatedWork W2999805992 @default.
- W4225540782 hasRelatedWork W3116150086 @default.
- W4225540782 hasRelatedWork W3133861977 @default.
- W4225540782 hasRelatedWork W4200173597 @default.
- W4225540782 hasRelatedWork W4223943233 @default.
- W4225540782 hasRelatedWork W4291897433 @default.
- W4225540782 hasRelatedWork W4312417841 @default.
- W4225540782 hasRelatedWork W4321369474 @default.
- W4225540782 hasRelatedWork W4380075502 @default.
- W4225540782 hasVolume "15" @default.
- W4225540782 isParatext "false" @default.
- W4225540782 isRetracted "false" @default.
- W4225540782 workType "article" @default.