Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225545900> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4225545900 endingPage "18011" @default.
- W4225545900 startingPage "18001" @default.
- W4225545900 abstract "Traffic supply-demand mismatching has a severe impact on intelligent transportation systems. Fortunately, order dispatching is a promising option to mitigate the traffic supply-demand imbalance. Along this line, this article proposes the Multi-Driver Multi-Order Dispatching (MDMOD) method to make efficient order dispatching policy and enhance the experience of drivers and passengers. In the proposed MDMOD method, the Dynamic Multi-Objective Reward Learning (DMRL) algorithm is proposed to measure the driver-order-pair value, which illustrates the importance of a driver serving a specific order. A centralized matching algorithm is introduced to match all drivers and orders to maximize all driver-order-pair values. The multi-objective reward in the DMRL algorithm considers both immediate gains (i.e., pick-up distance) and future gains (i.e., the future traffic demand of order destination) to effectively improve the experience of drivers and passengers. Furthermore, by introducing the driver service level into the multi-objective reward, the “outstanding driver better reward” mechanism is realized to promote the ecological development of ride-sharing platforms. Notably, the Temporal-Graph Convolutional Network algorithm is proposed to predict the future traffic demand. Some virtual orders, which generated with the predicted future traffic demand, are dispatched to idle drivers to multiplex the traffic supply fully. A simulator is designed to test the performance of the proposed MDMOD method, experimental results demonstrate that the MDMOD method outperforms the state-of-the-art methods in terms of Average Driver Income and Order Response Rate." @default.
- W4225545900 created "2022-05-05" @default.
- W4225545900 creator A5009925415 @default.
- W4225545900 creator A5025187681 @default.
- W4225545900 creator A5037725670 @default.
- W4225545900 creator A5069245265 @default.
- W4225545900 creator A5091665044 @default.
- W4225545900 date "2022-10-01" @default.
- W4225545900 modified "2023-09-24" @default.
- W4225545900 title "Dynamic Order Dispatching With Multiobjective Reward Learning" @default.
- W4225545900 cites W2041501777 @default.
- W4225545900 cites W2111688141 @default.
- W4225545900 cites W2152822538 @default.
- W4225545900 cites W2161581167 @default.
- W4225545900 cites W2743316574 @default.
- W4225545900 cites W2754881344 @default.
- W4225545900 cites W2766311542 @default.
- W4225545900 cites W2808810245 @default.
- W4225545900 cites W2892315936 @default.
- W4225545900 cites W2904832339 @default.
- W4225545900 cites W2907543530 @default.
- W4225545900 cites W2914154006 @default.
- W4225545900 cites W2946160394 @default.
- W4225545900 cites W2952281591 @default.
- W4225545900 cites W2956066740 @default.
- W4225545900 cites W2962764167 @default.
- W4225545900 cites W2978949425 @default.
- W4225545900 cites W3000537180 @default.
- W4225545900 cites W3012481664 @default.
- W4225545900 cites W3014141732 @default.
- W4225545900 cites W3018779742 @default.
- W4225545900 cites W3040221354 @default.
- W4225545900 cites W3091369929 @default.
- W4225545900 cites W3096362978 @default.
- W4225545900 cites W3100997743 @default.
- W4225545900 cites W3119186746 @default.
- W4225545900 cites W3128129382 @default.
- W4225545900 cites W3137964246 @default.
- W4225545900 cites W3143418053 @default.
- W4225545900 cites W3176349493 @default.
- W4225545900 cites W3213412677 @default.
- W4225545900 cites W3213620776 @default.
- W4225545900 doi "https://doi.org/10.1109/tits.2022.3167030" @default.
- W4225545900 hasPublicationYear "2022" @default.
- W4225545900 type Work @default.
- W4225545900 citedByCount "0" @default.
- W4225545900 crossrefType "journal-article" @default.
- W4225545900 hasAuthorship W4225545900A5009925415 @default.
- W4225545900 hasAuthorship W4225545900A5025187681 @default.
- W4225545900 hasAuthorship W4225545900A5037725670 @default.
- W4225545900 hasAuthorship W4225545900A5069245265 @default.
- W4225545900 hasAuthorship W4225545900A5091665044 @default.
- W4225545900 hasConcept C10138342 @default.
- W4225545900 hasConcept C105795698 @default.
- W4225545900 hasConcept C127413603 @default.
- W4225545900 hasConcept C162324750 @default.
- W4225545900 hasConcept C165064840 @default.
- W4225545900 hasConcept C182306322 @default.
- W4225545900 hasConcept C22212356 @default.
- W4225545900 hasConcept C33923547 @default.
- W4225545900 hasConcept C41008148 @default.
- W4225545900 hasConcept C42475967 @default.
- W4225545900 hasConcept C44154836 @default.
- W4225545900 hasConcept C79403827 @default.
- W4225545900 hasConceptScore W4225545900C10138342 @default.
- W4225545900 hasConceptScore W4225545900C105795698 @default.
- W4225545900 hasConceptScore W4225545900C127413603 @default.
- W4225545900 hasConceptScore W4225545900C162324750 @default.
- W4225545900 hasConceptScore W4225545900C165064840 @default.
- W4225545900 hasConceptScore W4225545900C182306322 @default.
- W4225545900 hasConceptScore W4225545900C22212356 @default.
- W4225545900 hasConceptScore W4225545900C33923547 @default.
- W4225545900 hasConceptScore W4225545900C41008148 @default.
- W4225545900 hasConceptScore W4225545900C42475967 @default.
- W4225545900 hasConceptScore W4225545900C44154836 @default.
- W4225545900 hasConceptScore W4225545900C79403827 @default.
- W4225545900 hasFunder F4320321001 @default.
- W4225545900 hasFunder F4320335777 @default.
- W4225545900 hasIssue "10" @default.
- W4225545900 hasLocation W42255459001 @default.
- W4225545900 hasOpenAccess W4225545900 @default.
- W4225545900 hasPrimaryLocation W42255459001 @default.
- W4225545900 hasRelatedWork W109809851 @default.
- W4225545900 hasRelatedWork W1494337374 @default.
- W4225545900 hasRelatedWork W2361944761 @default.
- W4225545900 hasRelatedWork W2363160663 @default.
- W4225545900 hasRelatedWork W2363207358 @default.
- W4225545900 hasRelatedWork W2368676408 @default.
- W4225545900 hasRelatedWork W2380389143 @default.
- W4225545900 hasRelatedWork W2391408860 @default.
- W4225545900 hasRelatedWork W2734467085 @default.
- W4225545900 hasRelatedWork W2899084033 @default.
- W4225545900 hasVolume "23" @default.
- W4225545900 isParatext "false" @default.
- W4225545900 isRetracted "false" @default.
- W4225545900 workType "article" @default.