Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225547992> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4225547992 endingPage "176" @default.
- W4225547992 startingPage "167" @default.
- W4225547992 abstract "Hematoma volume (HV) is a significant diagnosis for determining the clinical stage and therapeutic approach for intracerebral hemorrhage (ICH). The aim of this study is to develop a robust deep learning segmentation method for the fast and accurate HV analysis using computed tomography.A novel dimension reduction UNet (DR-UNet) model was developed for computed tomography image segmentation and HV measurement. Two data sets, 512 ICH patients with 12 568 computed tomography slices in the retrospective data set and 50 ICH patients with 1257 slices in the prospective data set, were used for network training, validation, and internal and external testing. Moreover, 13 irregular hematoma cases, 11 subdural and epidural hematoma cases, and 50 different HV cases into 3 groups (<30, 30-60, and >60 mL) were selected to further evaluate the robustness of DR-UNet. The image segmentation performance of DR-UNet was compared with those of UNet, the fuzzy clustering method, and the active contour method. The HV measurement performance was compared using DR-UNet, UNet, and the Coniglobus formula method.Using DR-UNet, the segmentation model achieved a performance similar to that of expert clinicians in 2 independent test data sets containing internal testing data (Dice of 0.861±0.139) and external testing data (Dice of 0.874±0.130). The HV measurement derived from DR-UNet was strongly correlated with that from manual segmentation (R2=0.9979; P<0.0001). In the irregularly shaped hematoma group and the subdural and epidural hematoma group, DR-UNet was more robust than UNet in both hematoma segmentation and HV measurement. There is no statistical significance in segmentation accuracy among 3 different HV groups.DR-UNet can segment hematomas from the computed tomography scans of ICH patients and quantify the HV with better accuracy and greater efficiency than the main existing methods and with similar performance to expert clinicians. Due to robust performance and stable segmentation on different ICHs, DR-UNet could facilitate the development of deep learning systems for a variety of clinical applications." @default.
- W4225547992 created "2022-05-05" @default.
- W4225547992 creator A5010865972 @default.
- W4225547992 creator A5042042934 @default.
- W4225547992 creator A5049691044 @default.
- W4225547992 creator A5051381611 @default.
- W4225547992 creator A5070100940 @default.
- W4225547992 creator A5075663308 @default.
- W4225547992 date "2022-01-01" @default.
- W4225547992 modified "2023-10-12" @default.
- W4225547992 title "A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage" @default.
- W4225547992 cites W1935838690 @default.
- W4225547992 cites W2057318393 @default.
- W4225547992 cites W2070999990 @default.
- W4225547992 cites W2082198480 @default.
- W4225547992 cites W2201728905 @default.
- W4225547992 cites W2581082771 @default.
- W4225547992 cites W2777957624 @default.
- W4225547992 cites W2786713557 @default.
- W4225547992 cites W2795774310 @default.
- W4225547992 cites W2886821482 @default.
- W4225547992 cites W2887515103 @default.
- W4225547992 cites W2896817483 @default.
- W4225547992 cites W2904914291 @default.
- W4225547992 cites W2905307056 @default.
- W4225547992 cites W2911997543 @default.
- W4225547992 cites W2928842276 @default.
- W4225547992 cites W2985804701 @default.
- W4225547992 cites W2989510061 @default.
- W4225547992 cites W2999601335 @default.
- W4225547992 cites W3008287668 @default.
- W4225547992 cites W3034573609 @default.
- W4225547992 cites W3041281453 @default.
- W4225547992 cites W3041714909 @default.
- W4225547992 cites W3103215654 @default.
- W4225547992 doi "https://doi.org/10.1161/strokeaha.120.032243" @default.
- W4225547992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34601899" @default.
- W4225547992 hasPublicationYear "2022" @default.
- W4225547992 type Work @default.
- W4225547992 citedByCount "24" @default.
- W4225547992 countsByYear W42255479922022 @default.
- W4225547992 countsByYear W42255479922023 @default.
- W4225547992 crossrefType "journal-article" @default.
- W4225547992 hasAuthorship W4225547992A5010865972 @default.
- W4225547992 hasAuthorship W4225547992A5042042934 @default.
- W4225547992 hasAuthorship W4225547992A5049691044 @default.
- W4225547992 hasAuthorship W4225547992A5051381611 @default.
- W4225547992 hasAuthorship W4225547992A5070100940 @default.
- W4225547992 hasAuthorship W4225547992A5075663308 @default.
- W4225547992 hasBestOaLocation W42255479921 @default.
- W4225547992 hasConcept C126838900 @default.
- W4225547992 hasConcept C141071460 @default.
- W4225547992 hasConcept C154945302 @default.
- W4225547992 hasConcept C17624336 @default.
- W4225547992 hasConcept C2777094939 @default.
- W4225547992 hasConcept C2779662492 @default.
- W4225547992 hasConcept C2989005 @default.
- W4225547992 hasConcept C41008148 @default.
- W4225547992 hasConcept C58489278 @default.
- W4225547992 hasConcept C71924100 @default.
- W4225547992 hasConcept C89600930 @default.
- W4225547992 hasConceptScore W4225547992C126838900 @default.
- W4225547992 hasConceptScore W4225547992C141071460 @default.
- W4225547992 hasConceptScore W4225547992C154945302 @default.
- W4225547992 hasConceptScore W4225547992C17624336 @default.
- W4225547992 hasConceptScore W4225547992C2777094939 @default.
- W4225547992 hasConceptScore W4225547992C2779662492 @default.
- W4225547992 hasConceptScore W4225547992C2989005 @default.
- W4225547992 hasConceptScore W4225547992C41008148 @default.
- W4225547992 hasConceptScore W4225547992C58489278 @default.
- W4225547992 hasConceptScore W4225547992C71924100 @default.
- W4225547992 hasConceptScore W4225547992C89600930 @default.
- W4225547992 hasIssue "1" @default.
- W4225547992 hasLocation W42255479921 @default.
- W4225547992 hasLocation W42255479922 @default.
- W4225547992 hasOpenAccess W4225547992 @default.
- W4225547992 hasPrimaryLocation W42255479921 @default.
- W4225547992 hasRelatedWork W1997743536 @default.
- W4225547992 hasRelatedWork W2351127419 @default.
- W4225547992 hasRelatedWork W2351191359 @default.
- W4225547992 hasRelatedWork W2367801595 @default.
- W4225547992 hasRelatedWork W2375557308 @default.
- W4225547992 hasRelatedWork W2375991202 @default.
- W4225547992 hasRelatedWork W2377060108 @default.
- W4225547992 hasRelatedWork W2377350813 @default.
- W4225547992 hasRelatedWork W2383287010 @default.
- W4225547992 hasRelatedWork W2925108450 @default.
- W4225547992 hasVolume "53" @default.
- W4225547992 isParatext "false" @default.
- W4225547992 isRetracted "false" @default.
- W4225547992 workType "article" @default.