Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225548908> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4225548908 endingPage "12" @default.
- W4225548908 startingPage "1" @default.
- W4225548908 abstract "Countries around the world are facing so many challenges to slow down the spread of the current SARS-CoV-2 virus. Vaccination is an effective way to combat this virus and prevent its spreading among individuals. Currently, there are more than 50 SARS-CoV-2 vaccine candidates in trials; only a few of them are already in use. The primary objective of this study is to analyse the public awareness and opinion toward the vaccination process and to develop a model that predicts the awareness and acceptability of SARS-CoV-2 vaccines in Saudi Arabia by analysing a dataset of Arabic tweets related to vaccination. Therefore, several machine learning models such as Support Vector Machine (SVM), Naïve Bayes (NB), and Logistic Regression (LR), sideways with the N-gram and Term Frequency-Inverse Document Frequency (TF-IDF) techniques for feature extraction and Long Short-Term Memory (LSTM) model used with word embedding. LR with unigram feature extraction has achieved the best accuracy, recall, and F1 score with scores of 0.76, 0.69, and 0.72, respectively. However, the best precision value of 0.80 was achieved using SVM with unigram and NB with bigram TF-IDF. However, the Long Short-Term Memory (LSTM) model outperformed the other models with an accuracy of 0.95, a precision of 0.96, a recall of 0.95, and an F1 score of 0.95. This model will help in gaining a complete idea of how receptive people are to the vaccine. Thus, the government will be able to find new ways and run more campaigns to raise awareness of the importance of the vaccine." @default.
- W4225548908 created "2022-05-05" @default.
- W4225548908 creator A5021230550 @default.
- W4225548908 creator A5022371094 @default.
- W4225548908 creator A5026179864 @default.
- W4225548908 creator A5033964908 @default.
- W4225548908 creator A5036961841 @default.
- W4225548908 creator A5055842935 @default.
- W4225548908 creator A5071165729 @default.
- W4225548908 date "2022-04-06" @default.
- W4225548908 modified "2023-09-27" @default.
- W4225548908 title "Computational Intelligence-Based Model for Exploring Individual Perception on SARS-CoV-2 Vaccine in Saudi Arabia" @default.
- W4225548908 cites W1124348177 @default.
- W4225548908 cites W2025330985 @default.
- W4225548908 cites W2396779641 @default.
- W4225548908 cites W2567653693 @default.
- W4225548908 cites W2579101046 @default.
- W4225548908 cites W2810665353 @default.
- W4225548908 cites W2883565187 @default.
- W4225548908 cites W2944152053 @default.
- W4225548908 cites W2963587816 @default.
- W4225548908 cites W3039503982 @default.
- W4225548908 cites W3040896098 @default.
- W4225548908 cites W3046137360 @default.
- W4225548908 cites W3094733139 @default.
- W4225548908 cites W3094803650 @default.
- W4225548908 cites W3106287329 @default.
- W4225548908 cites W3127071205 @default.
- W4225548908 cites W3133701957 @default.
- W4225548908 cites W3176969785 @default.
- W4225548908 cites W3198252989 @default.
- W4225548908 cites W4200223055 @default.
- W4225548908 cites W4200266487 @default.
- W4225548908 cites W4200361296 @default.
- W4225548908 cites W4200567430 @default.
- W4225548908 cites W4256669726 @default.
- W4225548908 doi "https://doi.org/10.1155/2022/6722427" @default.
- W4225548908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35401714" @default.
- W4225548908 hasPublicationYear "2022" @default.
- W4225548908 type Work @default.
- W4225548908 citedByCount "1" @default.
- W4225548908 countsByYear W42255489082023 @default.
- W4225548908 crossrefType "journal-article" @default.
- W4225548908 hasAuthorship W4225548908A5021230550 @default.
- W4225548908 hasAuthorship W4225548908A5022371094 @default.
- W4225548908 hasAuthorship W4225548908A5026179864 @default.
- W4225548908 hasAuthorship W4225548908A5033964908 @default.
- W4225548908 hasAuthorship W4225548908A5036961841 @default.
- W4225548908 hasAuthorship W4225548908A5055842935 @default.
- W4225548908 hasAuthorship W4225548908A5071165729 @default.
- W4225548908 hasBestOaLocation W42255489081 @default.
- W4225548908 hasConcept C108757681 @default.
- W4225548908 hasConcept C119857082 @default.
- W4225548908 hasConcept C121332964 @default.
- W4225548908 hasConcept C12267149 @default.
- W4225548908 hasConcept C137546455 @default.
- W4225548908 hasConcept C151956035 @default.
- W4225548908 hasConcept C154945302 @default.
- W4225548908 hasConcept C41008148 @default.
- W4225548908 hasConcept C52001869 @default.
- W4225548908 hasConcept C61797465 @default.
- W4225548908 hasConcept C62520636 @default.
- W4225548908 hasConcept C81758059 @default.
- W4225548908 hasConceptScore W4225548908C108757681 @default.
- W4225548908 hasConceptScore W4225548908C119857082 @default.
- W4225548908 hasConceptScore W4225548908C121332964 @default.
- W4225548908 hasConceptScore W4225548908C12267149 @default.
- W4225548908 hasConceptScore W4225548908C137546455 @default.
- W4225548908 hasConceptScore W4225548908C151956035 @default.
- W4225548908 hasConceptScore W4225548908C154945302 @default.
- W4225548908 hasConceptScore W4225548908C41008148 @default.
- W4225548908 hasConceptScore W4225548908C52001869 @default.
- W4225548908 hasConceptScore W4225548908C61797465 @default.
- W4225548908 hasConceptScore W4225548908C62520636 @default.
- W4225548908 hasConceptScore W4225548908C81758059 @default.
- W4225548908 hasLocation W42255489081 @default.
- W4225548908 hasLocation W42255489082 @default.
- W4225548908 hasLocation W42255489083 @default.
- W4225548908 hasOpenAccess W4225548908 @default.
- W4225548908 hasPrimaryLocation W42255489081 @default.
- W4225548908 hasRelatedWork W1996541855 @default.
- W4225548908 hasRelatedWork W3186233728 @default.
- W4225548908 hasRelatedWork W3195168932 @default.
- W4225548908 hasRelatedWork W4205958290 @default.
- W4225548908 hasRelatedWork W4285169119 @default.
- W4225548908 hasRelatedWork W4312478656 @default.
- W4225548908 hasRelatedWork W4327772909 @default.
- W4225548908 hasRelatedWork W4364301914 @default.
- W4225548908 hasRelatedWork W4384828018 @default.
- W4225548908 hasRelatedWork W4386260374 @default.
- W4225548908 hasVolume "2022" @default.
- W4225548908 isParatext "false" @default.
- W4225548908 isRetracted "false" @default.
- W4225548908 workType "article" @default.