Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225549404> ?p ?o ?g. }
- W4225549404 endingPage "106880" @default.
- W4225549404 startingPage "106880" @default.
- W4225549404 abstract "Due to its obvious advantages in saving labor and pesticides, weeding robots are one of the key technologies for modern and sustainable agriculture and have attracted increasing attention from researchers and developers. Some papers on machine-vision-based weeding robots have been published in recent years, yet there is no clear attempt to systematically study these papers to discuss the components of a robotic weed control system, such as visual navigation, weed detection and directional weeding. In this paper, typical machine-vision-based weeding robots proposed or constructed in the last 30 years, together with a few open datasets for weed detection, are reviewed. Key technologies such as image preprocessing, image segmentation, navigation line extraction, and weed recognition based on machine learning (ML) or deep learning (DL) for weeding robots are discussed. To illustrate the application of DL algorithms to weed detection, this paper provides weed object detection results and a comparative analysis of eight baseline methods based on DL using a public dataset. The study found that there are still many issues that need to be addressed in each part of the robotic weeding control system. Because of environmental variation and system complexity, machine-vision-based weeding robots are still in their early stages. The results of the systematic review provide an understanding of innovative trends in the use of machine vision in weeding systems and references for future research on weeding robots." @default.
- W4225549404 created "2022-05-05" @default.
- W4225549404 creator A5022248804 @default.
- W4225549404 creator A5023214008 @default.
- W4225549404 creator A5032912484 @default.
- W4225549404 creator A5059492103 @default.
- W4225549404 creator A5062793914 @default.
- W4225549404 date "2022-05-01" @default.
- W4225549404 modified "2023-10-16" @default.
- W4225549404 title "Key technologies of machine vision for weeding robots: A review and benchmark" @default.
- W4225549404 cites W1200922351 @default.
- W4225549404 cites W1525257406 @default.
- W4225549404 cites W1536680647 @default.
- W4225549404 cites W1598235281 @default.
- W4225549404 cites W1967044300 @default.
- W4225549404 cites W1973788747 @default.
- W4225549404 cites W1980148204 @default.
- W4225549404 cites W2034794296 @default.
- W4225549404 cites W2042108112 @default.
- W4225549404 cites W2063155154 @default.
- W4225549404 cites W2065703426 @default.
- W4225549404 cites W2101869354 @default.
- W4225549404 cites W2133059825 @default.
- W4225549404 cites W2185841109 @default.
- W4225549404 cites W2207432451 @default.
- W4225549404 cites W2326599763 @default.
- W4225549404 cites W2394911398 @default.
- W4225549404 cites W2514173981 @default.
- W4225549404 cites W2524954406 @default.
- W4225549404 cites W2586062600 @default.
- W4225549404 cites W2623225060 @default.
- W4225549404 cites W2739413041 @default.
- W4225549404 cites W2751390451 @default.
- W4225549404 cites W2755766995 @default.
- W4225549404 cites W2767861487 @default.
- W4225549404 cites W2769572566 @default.
- W4225549404 cites W2774919344 @default.
- W4225549404 cites W2791048936 @default.
- W4225549404 cites W2791636933 @default.
- W4225549404 cites W2803513103 @default.
- W4225549404 cites W2805267014 @default.
- W4225549404 cites W2884561390 @default.
- W4225549404 cites W2889730635 @default.
- W4225549404 cites W2890003067 @default.
- W4225549404 cites W2913227116 @default.
- W4225549404 cites W2915011392 @default.
- W4225549404 cites W2926464840 @default.
- W4225549404 cites W2930246464 @default.
- W4225549404 cites W2953328922 @default.
- W4225549404 cites W2962953743 @default.
- W4225549404 cites W2963037989 @default.
- W4225549404 cites W2972593454 @default.
- W4225549404 cites W2973282505 @default.
- W4225549404 cites W2980753708 @default.
- W4225549404 cites W2983056308 @default.
- W4225549404 cites W2991423016 @default.
- W4225549404 cites W3010345596 @default.
- W4225549404 cites W3010677011 @default.
- W4225549404 cites W3022353848 @default.
- W4225549404 cites W3022554249 @default.
- W4225549404 cites W3031965526 @default.
- W4225549404 cites W3034892949 @default.
- W4225549404 cites W3034971973 @default.
- W4225549404 cites W3043487218 @default.
- W4225549404 cites W3045780708 @default.
- W4225549404 cites W3047600962 @default.
- W4225549404 cites W3102474308 @default.
- W4225549404 cites W3104887532 @default.
- W4225549404 cites W3106250896 @default.
- W4225549404 cites W3119341740 @default.
- W4225549404 cites W3136950817 @default.
- W4225549404 cites W3165440766 @default.
- W4225549404 cites W3197183887 @default.
- W4225549404 cites W639708223 @default.
- W4225549404 doi "https://doi.org/10.1016/j.compag.2022.106880" @default.
- W4225549404 hasPublicationYear "2022" @default.
- W4225549404 type Work @default.
- W4225549404 citedByCount "28" @default.
- W4225549404 countsByYear W42255494042022 @default.
- W4225549404 countsByYear W42255494042023 @default.
- W4225549404 crossrefType "journal-article" @default.
- W4225549404 hasAuthorship W4225549404A5022248804 @default.
- W4225549404 hasAuthorship W4225549404A5023214008 @default.
- W4225549404 hasAuthorship W4225549404A5032912484 @default.
- W4225549404 hasAuthorship W4225549404A5059492103 @default.
- W4225549404 hasAuthorship W4225549404A5062793914 @default.
- W4225549404 hasConcept C119857082 @default.
- W4225549404 hasConcept C154945302 @default.
- W4225549404 hasConcept C26517878 @default.
- W4225549404 hasConcept C31972630 @default.
- W4225549404 hasConcept C34736171 @default.
- W4225549404 hasConcept C38652104 @default.
- W4225549404 hasConcept C41008148 @default.
- W4225549404 hasConcept C5339829 @default.
- W4225549404 hasConcept C90509273 @default.
- W4225549404 hasConceptScore W4225549404C119857082 @default.
- W4225549404 hasConceptScore W4225549404C154945302 @default.
- W4225549404 hasConceptScore W4225549404C26517878 @default.