Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225550807> ?p ?o ?g. }
- W4225550807 endingPage "29321" @default.
- W4225550807 startingPage "29307" @default.
- W4225550807 abstract "The use of Attitude and Heading Reference Systems (AHRS) for orientation estimation is now common practice in a wide range of applications, e.g., robotics and human motion tracking, aerial vehicles and aerospace, gaming and virtual reality, indoor pedestrian navigation and maritime navigation. The integration of the high-rate measurements can provide very accurate estimates, but these can suffer from errors accumulation due to the sensors drift over longer time scales. To overcome this issue, inertial sensors are typically combined with additional sensors and techniques. As an example, camera-based solutions have drawn a large attention by the community, thanks to their low-costs and easy hardware setup; moreover, impressive results have been demonstrated in the context of Deep Learning. This work presents the preliminary results obtained by DOES, a supportive Deep Learning method specifically designed for maritime navigation, which aims at improving the roll and pitch estimations obtained by common AHRS. DOES recovers these estimations through the analysis of the frames acquired by a low-cost camera pointing the horizon at sea. The training has been performed on the novel ROPIS dataset, presented in the context of this work, acquired using the FrameWO application developed for the scope. Promising results encourage to test other network backbones and to further expand the dataset, improving the accuracy of the results and the range of applications of the method as a valid support to visual-based odometry techniques." @default.
- W4225550807 created "2022-05-05" @default.
- W4225550807 creator A5015897920 @default.
- W4225550807 creator A5051502350 @default.
- W4225550807 creator A5062555637 @default.
- W4225550807 date "2022-01-01" @default.
- W4225550807 modified "2023-09-25" @default.
- W4225550807 title "DOES: A Deep Learning-Based Approach to Estimate Roll and Pitch at Sea" @default.
- W4225550807 cites W1677409904 @default.
- W4225550807 cites W1903029394 @default.
- W4225550807 cites W1966430548 @default.
- W4225550807 cites W2003410899 @default.
- W4225550807 cites W2010530932 @default.
- W4225550807 cites W2020496717 @default.
- W4225550807 cites W2032160168 @default.
- W4225550807 cites W2037034232 @default.
- W4225550807 cites W2044831755 @default.
- W4225550807 cites W2067416016 @default.
- W4225550807 cites W2095204446 @default.
- W4225550807 cites W2107556327 @default.
- W4225550807 cites W2108598243 @default.
- W4225550807 cites W2115579991 @default.
- W4225550807 cites W2122750542 @default.
- W4225550807 cites W2124386111 @default.
- W4225550807 cites W2133059825 @default.
- W4225550807 cites W2134373387 @default.
- W4225550807 cites W2162264349 @default.
- W4225550807 cites W2182977717 @default.
- W4225550807 cites W2194775991 @default.
- W4225550807 cites W2237571475 @default.
- W4225550807 cites W2336445371 @default.
- W4225550807 cites W2340897893 @default.
- W4225550807 cites W2396274919 @default.
- W4225550807 cites W2482726005 @default.
- W4225550807 cites W2529122122 @default.
- W4225550807 cites W2565829216 @default.
- W4225550807 cites W2569942262 @default.
- W4225550807 cites W2725258589 @default.
- W4225550807 cites W2733040768 @default.
- W4225550807 cites W2759375001 @default.
- W4225550807 cites W2795980524 @default.
- W4225550807 cites W2806794065 @default.
- W4225550807 cites W2883767467 @default.
- W4225550807 cites W2888832380 @default.
- W4225550807 cites W2897333573 @default.
- W4225550807 cites W2898002610 @default.
- W4225550807 cites W2904051629 @default.
- W4225550807 cites W2907882680 @default.
- W4225550807 cites W2946583690 @default.
- W4225550807 cites W2962677013 @default.
- W4225550807 cites W2963150697 @default.
- W4225550807 cites W2963446712 @default.
- W4225550807 cites W2963598210 @default.
- W4225550807 cites W2963644257 @default.
- W4225550807 cites W2964314455 @default.
- W4225550807 cites W2968489055 @default.
- W4225550807 cites W2971594416 @default.
- W4225550807 cites W3002651608 @default.
- W4225550807 cites W3003233851 @default.
- W4225550807 cites W3003617082 @default.
- W4225550807 cites W3008124346 @default.
- W4225550807 cites W3009401911 @default.
- W4225550807 cites W3088412635 @default.
- W4225550807 cites W3095353420 @default.
- W4225550807 cites W3096440539 @default.
- W4225550807 cites W3100847195 @default.
- W4225550807 cites W3100901464 @default.
- W4225550807 cites W3104978629 @default.
- W4225550807 cites W3125141208 @default.
- W4225550807 cites W3130482258 @default.
- W4225550807 cites W3165610079 @default.
- W4225550807 doi "https://doi.org/10.1109/access.2022.3158971" @default.
- W4225550807 hasPublicationYear "2022" @default.
- W4225550807 type Work @default.
- W4225550807 citedByCount "1" @default.
- W4225550807 countsByYear W42255508072022 @default.
- W4225550807 crossrefType "journal-article" @default.
- W4225550807 hasAuthorship W4225550807A5015897920 @default.
- W4225550807 hasAuthorship W4225550807A5051502350 @default.
- W4225550807 hasAuthorship W4225550807A5062555637 @default.
- W4225550807 hasBestOaLocation W42255508071 @default.
- W4225550807 hasConcept C108583219 @default.
- W4225550807 hasConcept C127413603 @default.
- W4225550807 hasConcept C128651787 @default.
- W4225550807 hasConcept C146978453 @default.
- W4225550807 hasConcept C151730666 @default.
- W4225550807 hasConcept C154945302 @default.
- W4225550807 hasConcept C16345878 @default.
- W4225550807 hasConcept C19966478 @default.
- W4225550807 hasConcept C204114589 @default.
- W4225550807 hasConcept C204323151 @default.
- W4225550807 hasConcept C2524010 @default.
- W4225550807 hasConcept C2776937971 @default.
- W4225550807 hasConcept C2779343474 @default.
- W4225550807 hasConcept C31972630 @default.
- W4225550807 hasConcept C33923547 @default.
- W4225550807 hasConcept C34413123 @default.
- W4225550807 hasConcept C41008148 @default.