Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225552018> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4225552018 endingPage "11" @default.
- W4225552018 startingPage "1" @default.
- W4225552018 abstract "This paper uses data mining technology to mathematically model the training movements of tennis players, establish a three-dimensional data information database of athletes utilizing depth imaging, analyze the data with data mining algorithms, and derive the results after comparative evaluation and analysis with a database of movement characteristics of tennis dribblers. This paper uses video observation and mathematical modeling to construct a tennis player training action evaluation model, which provides a reference basis for tennis players to improve and enhance their tactical level; it can also provide a reference for the development of sports training special theory of tennis projects and enrich the tactical diagnosis method of tennis matches. To improve the accuracy of 3D human pose estimation, this paper adopts a 3D skeleton point extraction method based on RGBD images; for the action alignment problem, this paper uses a dynamic time warping (DTW) algorithm; for the similarity measure, this paper gives a Pearson correlation coefficient method based on the joint point features of human parts. This paper aims to conduct a systematic theoretical analysis of tennis players’ training movements based on theories and methods such as system science theory and social network analysis. On this basis, the characteristics of tennis training technology development are analyzed from a combination of qualitative and quantitative perspectives, while the development of tennis player training is explored based on tracking observations of tennis player movement training, and finally, the attack and service characteristics of tennis training are analyzed to better provide some reference for the sustainable development of tennis." @default.
- W4225552018 created "2022-05-05" @default.
- W4225552018 creator A5077319251 @default.
- W4225552018 date "2022-02-21" @default.
- W4225552018 modified "2023-09-25" @default.
- W4225552018 title "A Data Mining-Based Model for Evaluating Tennis Players’ Training Movements" @default.
- W4225552018 cites W2580219088 @default.
- W4225552018 cites W2665354885 @default.
- W4225552018 cites W2711287290 @default.
- W4225552018 cites W2775733089 @default.
- W4225552018 cites W2805715956 @default.
- W4225552018 cites W2808602126 @default.
- W4225552018 cites W2888231268 @default.
- W4225552018 cites W2896419919 @default.
- W4225552018 cites W2902867562 @default.
- W4225552018 cites W2928460836 @default.
- W4225552018 cites W2945233338 @default.
- W4225552018 cites W2971518682 @default.
- W4225552018 cites W2988244882 @default.
- W4225552018 cites W2996380463 @default.
- W4225552018 cites W3027836184 @default.
- W4225552018 cites W3036638150 @default.
- W4225552018 cites W3041929805 @default.
- W4225552018 doi "https://doi.org/10.1155/2022/8950732" @default.
- W4225552018 hasPublicationYear "2022" @default.
- W4225552018 type Work @default.
- W4225552018 citedByCount "0" @default.
- W4225552018 crossrefType "journal-article" @default.
- W4225552018 hasAuthorship W4225552018A5077319251 @default.
- W4225552018 hasBestOaLocation W42255520181 @default.
- W4225552018 hasConcept C103278499 @default.
- W4225552018 hasConcept C115961682 @default.
- W4225552018 hasConcept C119857082 @default.
- W4225552018 hasConcept C121332964 @default.
- W4225552018 hasConcept C124101348 @default.
- W4225552018 hasConcept C154945302 @default.
- W4225552018 hasConcept C199360897 @default.
- W4225552018 hasConcept C2524010 @default.
- W4225552018 hasConcept C2780791683 @default.
- W4225552018 hasConcept C2780801425 @default.
- W4225552018 hasConcept C28719098 @default.
- W4225552018 hasConcept C33923547 @default.
- W4225552018 hasConcept C41008148 @default.
- W4225552018 hasConcept C62520636 @default.
- W4225552018 hasConceptScore W4225552018C103278499 @default.
- W4225552018 hasConceptScore W4225552018C115961682 @default.
- W4225552018 hasConceptScore W4225552018C119857082 @default.
- W4225552018 hasConceptScore W4225552018C121332964 @default.
- W4225552018 hasConceptScore W4225552018C124101348 @default.
- W4225552018 hasConceptScore W4225552018C154945302 @default.
- W4225552018 hasConceptScore W4225552018C199360897 @default.
- W4225552018 hasConceptScore W4225552018C2524010 @default.
- W4225552018 hasConceptScore W4225552018C2780791683 @default.
- W4225552018 hasConceptScore W4225552018C2780801425 @default.
- W4225552018 hasConceptScore W4225552018C28719098 @default.
- W4225552018 hasConceptScore W4225552018C33923547 @default.
- W4225552018 hasConceptScore W4225552018C41008148 @default.
- W4225552018 hasConceptScore W4225552018C62520636 @default.
- W4225552018 hasLocation W42255520181 @default.
- W4225552018 hasLocation W42255520182 @default.
- W4225552018 hasOpenAccess W4225552018 @default.
- W4225552018 hasPrimaryLocation W42255520181 @default.
- W4225552018 hasRelatedWork W2032548952 @default.
- W4225552018 hasRelatedWork W2961085424 @default.
- W4225552018 hasRelatedWork W3046775127 @default.
- W4225552018 hasRelatedWork W3170094116 @default.
- W4225552018 hasRelatedWork W4205958290 @default.
- W4225552018 hasRelatedWork W4285260836 @default.
- W4225552018 hasRelatedWork W4286629047 @default.
- W4225552018 hasRelatedWork W4306321456 @default.
- W4225552018 hasRelatedWork W4306674287 @default.
- W4225552018 hasRelatedWork W4224009465 @default.
- W4225552018 hasVolume "2022" @default.
- W4225552018 isParatext "false" @default.
- W4225552018 isRetracted "false" @default.
- W4225552018 workType "article" @default.