Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225552947> ?p ?o ?g. }
- W4225552947 endingPage "39655" @default.
- W4225552947 startingPage "39638" @default.
- W4225552947 abstract "Electricity theft is a global problem that negatively affects both utility companies and electricity users. It destabilizes the economic development of utility companies, causes electric hazards and impacts the high cost of energy for users. The development of smart grids plays an important role in electricity theft detection since they generate massive data that includes customer consumption data which, through machine learning and deep learning techniques, can be utilized to detect electricity theft. This paper introduces the theft detection method which uses comprehensive features in time and frequency domains in a deep neural network-based classification approach. We address dataset weaknesses such as missing data and class imbalance problems through data interpolation and synthetic data generation processes. We analyze and compare the contribution of features from both time and frequency domains, run experiments in combined and reduced feature space using principal component analysis and finally incorporate minimum redundancy maximum relevance scheme for validating the most important features. We improve the electricity theft detection performance by optimizing hyperparameters using a Bayesian optimizer and we employ an adaptive moment estimation optimizer to carry out experiments using different values of key parameters to determine the optimal settings that achieve the best accuracy. Lastly, we show the competitiveness of our method in comparison with other methods evaluated on the same dataset. On validation, we obtained 97% area under the curve (AUC), which is 1% higher than the best AUC in existing works, and 91.8% accuracy, which is the second-best on the benchmark." @default.
- W4225552947 created "2022-05-05" @default.
- W4225552947 creator A5012337252 @default.
- W4225552947 creator A5073554988 @default.
- W4225552947 creator A5083550268 @default.
- W4225552947 date "2022-01-01" @default.
- W4225552947 modified "2023-10-14" @default.
- W4225552947 title "Electricity Theft Detection in Smart Grids Based on Deep Neural Network" @default.
- W4225552947 cites W1512298495 @default.
- W4225552947 cites W1523341807 @default.
- W4225552947 cites W1976526581 @default.
- W4225552947 cites W2008668719 @default.
- W4225552947 cites W2009082127 @default.
- W4225552947 cites W2123585936 @default.
- W4225552947 cites W2128728535 @default.
- W4225552947 cites W2153678774 @default.
- W4225552947 cites W2155819228 @default.
- W4225552947 cites W2170673311 @default.
- W4225552947 cites W2212529815 @default.
- W4225552947 cites W2538380608 @default.
- W4225552947 cites W2604319603 @default.
- W4225552947 cites W2776990447 @default.
- W4225552947 cites W2794227555 @default.
- W4225552947 cites W2807858633 @default.
- W4225552947 cites W2808209024 @default.
- W4225552947 cites W2811374032 @default.
- W4225552947 cites W2861440650 @default.
- W4225552947 cites W2896556344 @default.
- W4225552947 cites W2959400106 @default.
- W4225552947 cites W2970705010 @default.
- W4225552947 cites W2979952961 @default.
- W4225552947 cites W2999859130 @default.
- W4225552947 cites W3005593395 @default.
- W4225552947 cites W3013890012 @default.
- W4225552947 cites W3025628315 @default.
- W4225552947 cites W3035707407 @default.
- W4225552947 cites W3089091568 @default.
- W4225552947 cites W3127541695 @default.
- W4225552947 cites W3157830433 @default.
- W4225552947 cites W3192885136 @default.
- W4225552947 doi "https://doi.org/10.1109/access.2022.3166146" @default.
- W4225552947 hasPublicationYear "2022" @default.
- W4225552947 type Work @default.
- W4225552947 citedByCount "27" @default.
- W4225552947 countsByYear W42255529472022 @default.
- W4225552947 countsByYear W42255529472023 @default.
- W4225552947 crossrefType "journal-article" @default.
- W4225552947 hasAuthorship W4225552947A5012337252 @default.
- W4225552947 hasAuthorship W4225552947A5073554988 @default.
- W4225552947 hasAuthorship W4225552947A5083550268 @default.
- W4225552947 hasBestOaLocation W42255529471 @default.
- W4225552947 hasConcept C10558101 @default.
- W4225552947 hasConcept C108583219 @default.
- W4225552947 hasConcept C119599485 @default.
- W4225552947 hasConcept C119857082 @default.
- W4225552947 hasConcept C12267149 @default.
- W4225552947 hasConcept C124101348 @default.
- W4225552947 hasConcept C127413603 @default.
- W4225552947 hasConcept C13280743 @default.
- W4225552947 hasConcept C154945302 @default.
- W4225552947 hasConcept C185798385 @default.
- W4225552947 hasConcept C205649164 @default.
- W4225552947 hasConcept C206658404 @default.
- W4225552947 hasConcept C41008148 @default.
- W4225552947 hasConcept C50644808 @default.
- W4225552947 hasConcept C52001869 @default.
- W4225552947 hasConceptScore W4225552947C10558101 @default.
- W4225552947 hasConceptScore W4225552947C108583219 @default.
- W4225552947 hasConceptScore W4225552947C119599485 @default.
- W4225552947 hasConceptScore W4225552947C119857082 @default.
- W4225552947 hasConceptScore W4225552947C12267149 @default.
- W4225552947 hasConceptScore W4225552947C124101348 @default.
- W4225552947 hasConceptScore W4225552947C127413603 @default.
- W4225552947 hasConceptScore W4225552947C13280743 @default.
- W4225552947 hasConceptScore W4225552947C154945302 @default.
- W4225552947 hasConceptScore W4225552947C185798385 @default.
- W4225552947 hasConceptScore W4225552947C205649164 @default.
- W4225552947 hasConceptScore W4225552947C206658404 @default.
- W4225552947 hasConceptScore W4225552947C41008148 @default.
- W4225552947 hasConceptScore W4225552947C50644808 @default.
- W4225552947 hasConceptScore W4225552947C52001869 @default.
- W4225552947 hasFunder F4320320671 @default.
- W4225552947 hasLocation W42255529471 @default.
- W4225552947 hasOpenAccess W4225552947 @default.
- W4225552947 hasPrimaryLocation W42255529471 @default.
- W4225552947 hasRelatedWork W3014300295 @default.
- W4225552947 hasRelatedWork W4223564025 @default.
- W4225552947 hasRelatedWork W4223943233 @default.
- W4225552947 hasRelatedWork W4225161397 @default.
- W4225552947 hasRelatedWork W4312200629 @default.
- W4225552947 hasRelatedWork W4360585206 @default.
- W4225552947 hasRelatedWork W4364306694 @default.
- W4225552947 hasRelatedWork W4380075502 @default.
- W4225552947 hasRelatedWork W4380086463 @default.
- W4225552947 hasRelatedWork W4385452424 @default.
- W4225552947 hasVolume "10" @default.
- W4225552947 isParatext "false" @default.
- W4225552947 isRetracted "false" @default.