Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225554041> ?p ?o ?g. }
- W4225554041 endingPage "e0265254" @default.
- W4225554041 startingPage "e0265254" @default.
- W4225554041 abstract "Artificial intelligence and machine learning (AI/ML) is becoming increasingly more accessible to biomedical researchers with significant potential to transform biomedicine through optimization of highly-accurate predictive models and enabling better understanding of disease biology. Automated machine learning (AutoML) in particular is positioned to democratize artificial intelligence (AI) by reducing the amount of human input and ML expertise needed. However, successful translation of AI/ML in biomedicine requires moving beyond optimizing only for prediction accuracy and towards establishing reproducible clinical and biological inferences. This is especially challenging for clinical studies on rare disorders where the smaller patient cohorts and corresponding sample size is an obstacle for reproducible modeling results. Here, we present a model-agnostic framework to reinforce AutoML using strategies and tools of explainable and reproducible AI, including novel metrics to assess model reproducibility. The framework enables clinicians to interpret AutoML-generated models for clinical and biological verifiability and consequently integrate domain expertise during model development. We applied the framework towards spinal cord injury prognostication to optimize the intraoperative hemodynamic range during injury-related surgery and additionally identified a strong detrimental relationship between intraoperative hypertension and patient outcome. Furthermore, our analysis captured how evolving clinical practices such as faster time-to-surgery and blood pressure management affect clinical model development. Altogether, we illustrate how expert-augmented AutoML improves inferential reproducibility for biomedical discovery and can ultimately build trust in AI processes towards effective clinical integration." @default.
- W4225554041 created "2022-05-05" @default.
- W4225554041 creator A5002073959 @default.
- W4225554041 creator A5002749837 @default.
- W4225554041 creator A5005008732 @default.
- W4225554041 creator A5005092651 @default.
- W4225554041 creator A5008043111 @default.
- W4225554041 creator A5016967222 @default.
- W4225554041 creator A5019326045 @default.
- W4225554041 creator A5024847912 @default.
- W4225554041 creator A5035979238 @default.
- W4225554041 creator A5036082323 @default.
- W4225554041 creator A5037243996 @default.
- W4225554041 creator A5038207542 @default.
- W4225554041 creator A5040171048 @default.
- W4225554041 creator A5043714838 @default.
- W4225554041 creator A5048990892 @default.
- W4225554041 creator A5056185731 @default.
- W4225554041 creator A5076261073 @default.
- W4225554041 creator A5079357056 @default.
- W4225554041 creator A5084130867 @default.
- W4225554041 creator A5087351342 @default.
- W4225554041 date "2022-04-07" @default.
- W4225554041 modified "2023-10-12" @default.
- W4225554041 title "Expert-augmented automated machine learning optimizes hemodynamic predictors of spinal cord injury outcome" @default.
- W4225554041 cites W1491255615 @default.
- W4225554041 cites W1506200090 @default.
- W4225554041 cites W154377515 @default.
- W4225554041 cites W1678356000 @default.
- W4225554041 cites W2004397066 @default.
- W4225554041 cites W2031044940 @default.
- W4225554041 cites W2041963100 @default.
- W4225554041 cites W2049490071 @default.
- W4225554041 cites W2111547563 @default.
- W4225554041 cites W2119387367 @default.
- W4225554041 cites W2136085913 @default.
- W4225554041 cites W2143053719 @default.
- W4225554041 cites W2143684265 @default.
- W4225554041 cites W2154290668 @default.
- W4225554041 cites W2191755155 @default.
- W4225554041 cites W2261714614 @default.
- W4225554041 cites W2414283705 @default.
- W4225554041 cites W2568988948 @default.
- W4225554041 cites W2591397536 @default.
- W4225554041 cites W2603379283 @default.
- W4225554041 cites W2732547613 @default.
- W4225554041 cites W2743110609 @default.
- W4225554041 cites W2747962007 @default.
- W4225554041 cites W2752227846 @default.
- W4225554041 cites W2804586924 @default.
- W4225554041 cites W2808649887 @default.
- W4225554041 cites W2808686685 @default.
- W4225554041 cites W2911964244 @default.
- W4225554041 cites W2932584980 @default.
- W4225554041 cites W2948978827 @default.
- W4225554041 cites W2981679558 @default.
- W4225554041 cites W2982242128 @default.
- W4225554041 cites W2982437619 @default.
- W4225554041 cites W2982580298 @default.
- W4225554041 cites W2990427812 @default.
- W4225554041 cites W2998670086 @default.
- W4225554041 cites W3006913750 @default.
- W4225554041 cites W3023398099 @default.
- W4225554041 cites W3031690984 @default.
- W4225554041 cites W3038522446 @default.
- W4225554041 cites W3044845446 @default.
- W4225554041 cites W3048817558 @default.
- W4225554041 cites W3080137061 @default.
- W4225554041 cites W3121170363 @default.
- W4225554041 cites W3121921387 @default.
- W4225554041 cites W3133587444 @default.
- W4225554041 cites W3136933888 @default.
- W4225554041 cites W3205617666 @default.
- W4225554041 cites W4225527246 @default.
- W4225554041 doi "https://doi.org/10.1371/journal.pone.0265254" @default.
- W4225554041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35390006" @default.
- W4225554041 hasPublicationYear "2022" @default.
- W4225554041 type Work @default.
- W4225554041 citedByCount "6" @default.
- W4225554041 countsByYear W42255540412022 @default.
- W4225554041 countsByYear W42255540412023 @default.
- W4225554041 crossrefType "journal-article" @default.
- W4225554041 hasAuthorship W4225554041A5002073959 @default.
- W4225554041 hasAuthorship W4225554041A5002749837 @default.
- W4225554041 hasAuthorship W4225554041A5005008732 @default.
- W4225554041 hasAuthorship W4225554041A5005092651 @default.
- W4225554041 hasAuthorship W4225554041A5008043111 @default.
- W4225554041 hasAuthorship W4225554041A5016967222 @default.
- W4225554041 hasAuthorship W4225554041A5019326045 @default.
- W4225554041 hasAuthorship W4225554041A5024847912 @default.
- W4225554041 hasAuthorship W4225554041A5035979238 @default.
- W4225554041 hasAuthorship W4225554041A5036082323 @default.
- W4225554041 hasAuthorship W4225554041A5037243996 @default.
- W4225554041 hasAuthorship W4225554041A5038207542 @default.
- W4225554041 hasAuthorship W4225554041A5040171048 @default.
- W4225554041 hasAuthorship W4225554041A5043714838 @default.
- W4225554041 hasAuthorship W4225554041A5048990892 @default.
- W4225554041 hasAuthorship W4225554041A5056185731 @default.