Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225564708> ?p ?o ?g. }
- W4225564708 abstract "Active breeding programs specifically for root system architecture (RSA) phenotypes remain rare; however, breeding for branch and taproot types in the perennial crop alfalfa is ongoing. Phenotyping in this and other crops for active RSA breeding has mostly used visual scoring of specific traits or subjective classification into different root types. While image-based methods have been developed, translation to applied breeding is limited. This research is aimed at developing and comparing image-based RSA phenotyping methods using machine and deep learning algorithms for objective classification of 617 root images from mature alfalfa plants collected from the field to support the ongoing breeding efforts. Our results show that unsupervised machine learning tends to incorrectly classify roots into a normal distribution with most lines predicted as the intermediate root type. Encouragingly, random forest and TensorFlow-based neural networks can classify the root types into branch-type, taproot-type, and an intermediate taproot-branch type with 86% accuracy. With image augmentation, the prediction accuracy was improved to 97%. Coupling the predicted root type with its prediction probability will give breeders a confidence level for better decisions to advance the best and exclude the worst lines from their breeding program. This machine and deep learning approach enables accurate classification of the RSA phenotypes for genomic breeding of climate-resilient alfalfa." @default.
- W4225564708 created "2022-05-05" @default.
- W4225564708 creator A5014949853 @default.
- W4225564708 creator A5034696585 @default.
- W4225564708 creator A5055802191 @default.
- W4225564708 creator A5060113872 @default.
- W4225564708 creator A5064739607 @default.
- W4225564708 creator A5081682012 @default.
- W4225564708 date "2022-01-01" @default.
- W4225564708 modified "2023-10-05" @default.
- W4225564708 title "Objective Phenotyping of Root System Architecture Using Image Augmentation and Machine Learning in Alfalfa (Medicago sativa L.)" @default.
- W4225564708 cites W1509721791 @default.
- W4225564708 cites W1525868404 @default.
- W4225564708 cites W1569197363 @default.
- W4225564708 cites W1845753398 @default.
- W4225564708 cites W1966020809 @default.
- W4225564708 cites W1966572123 @default.
- W4225564708 cites W1985842955 @default.
- W4225564708 cites W1986656197 @default.
- W4225564708 cites W1987822976 @default.
- W4225564708 cites W2001230597 @default.
- W4225564708 cites W2029359926 @default.
- W4225564708 cites W2040190083 @default.
- W4225564708 cites W2042257794 @default.
- W4225564708 cites W2057890665 @default.
- W4225564708 cites W2062691576 @default.
- W4225564708 cites W2064390405 @default.
- W4225564708 cites W2077521380 @default.
- W4225564708 cites W2087609992 @default.
- W4225564708 cites W2089449181 @default.
- W4225564708 cites W2091190665 @default.
- W4225564708 cites W2097472901 @default.
- W4225564708 cites W2119777125 @default.
- W4225564708 cites W2129787196 @default.
- W4225564708 cites W2130640640 @default.
- W4225564708 cites W2157779872 @default.
- W4225564708 cites W2159869915 @default.
- W4225564708 cites W2167896138 @default.
- W4225564708 cites W2175870147 @default.
- W4225564708 cites W2342700912 @default.
- W4225564708 cites W2481988088 @default.
- W4225564708 cites W2487770199 @default.
- W4225564708 cites W2560242916 @default.
- W4225564708 cites W2560482685 @default.
- W4225564708 cites W2590714582 @default.
- W4225564708 cites W2602769015 @default.
- W4225564708 cites W2737264913 @default.
- W4225564708 cites W2738783377 @default.
- W4225564708 cites W2789944782 @default.
- W4225564708 cites W2807169760 @default.
- W4225564708 cites W2882894581 @default.
- W4225564708 cites W2885412292 @default.
- W4225564708 cites W2900654819 @default.
- W4225564708 cites W2911615186 @default.
- W4225564708 cites W2939646807 @default.
- W4225564708 cites W2953907326 @default.
- W4225564708 cites W2973955937 @default.
- W4225564708 cites W2985065770 @default.
- W4225564708 cites W2989646192 @default.
- W4225564708 cites W3003433397 @default.
- W4225564708 cites W3006391450 @default.
- W4225564708 cites W3012078714 @default.
- W4225564708 cites W3017034177 @default.
- W4225564708 cites W3018321585 @default.
- W4225564708 cites W3026645015 @default.
- W4225564708 cites W3034231071 @default.
- W4225564708 cites W3034571173 @default.
- W4225564708 cites W3043299403 @default.
- W4225564708 cites W3087095779 @default.
- W4225564708 cites W3095090507 @default.
- W4225564708 cites W3126427204 @default.
- W4225564708 cites W3129194432 @default.
- W4225564708 cites W3134249947 @default.
- W4225564708 cites W3166070101 @default.
- W4225564708 cites W3168319761 @default.
- W4225564708 cites W3169830671 @default.
- W4225564708 cites W3176310134 @default.
- W4225564708 cites W3200906819 @default.
- W4225564708 cites W35739717 @default.
- W4225564708 cites W4200247654 @default.
- W4225564708 cites W4225564708 @default.
- W4225564708 cites W4231635889 @default.
- W4225564708 cites W4285800514 @default.
- W4225564708 cites W784166158 @default.
- W4225564708 cites W94052953 @default.
- W4225564708 doi "https://doi.org/10.34133/2022/9879610" @default.
- W4225564708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35479182" @default.
- W4225564708 hasPublicationYear "2022" @default.
- W4225564708 type Work @default.
- W4225564708 citedByCount "8" @default.
- W4225564708 countsByYear W42255647082022 @default.
- W4225564708 countsByYear W42255647082023 @default.
- W4225564708 crossrefType "journal-article" @default.
- W4225564708 hasAuthorship W4225564708A5014949853 @default.
- W4225564708 hasAuthorship W4225564708A5034696585 @default.
- W4225564708 hasAuthorship W4225564708A5055802191 @default.
- W4225564708 hasAuthorship W4225564708A5060113872 @default.
- W4225564708 hasAuthorship W4225564708A5064739607 @default.
- W4225564708 hasAuthorship W4225564708A5081682012 @default.
- W4225564708 hasBestOaLocation W42255647081 @default.