Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225568503> ?p ?o ?g. }
- W4225568503 endingPage "107981" @default.
- W4225568503 startingPage "107981" @default.
- W4225568503 abstract "• Nanosecond (ns) lasers can be used in laser sintering with potential advantages. • A thermal model for ns laser irradiation of a metal powder bed is desirable. • Such a model validated by transient temperature measurements is rare. • This paper reports such model development and validation work. • The study reveals complicated ns laser-induced thermal responses of a powder bed. Continuous-wave (CW) lasers are often used in selective laser sintering or melting; but short-pulsed lasers (e.g., with a pulse duration on the nanosecond scale) have their own potential advantages, such as high resolutions and small residual thermal effects. Compared with CW lasers, nanosecond lasers involve additional parameters (such as the pulse frequency) and more complicated relations between laser parameters and the powder bed thermal responses in laser sintering or melting. To help fundamentally understand the relations and guide efficient parameter selections, it is highly desirable to develop a thermal model for nanosecond laser irradiation of a metal powder bed and directly validate the model via in-situ transient temperature measurements. However, research work integrating such model development and validation has been rarely reported to the authors’ best knowledge. In this paper, a thermal model has been developed for nanosecond laser irradiation of a powder bed of micro metal particles. The model-predicted transient surface temperature history of the powder bed agrees reasonably well with that measured by a fast pyrometry system. Under the conditions studied, the model simulations show that high-frequency nanosecond laser pulses can induce a significant thermal accumulation effect in a metal powder bed due to its lower thermal conductivity than that for a bulk metal. With the same time-averaged laser power, by changing the pulse frequency, a nanosecond laser can induce very different temperature histories, melt pool evolutions and lifetimes, suggesting the laser has a potential advantage of good adjustability and flexibility in laser sintering. It also means a parameter-selection challenge due to the complicated parameter-thermal response relations, implying the importance of a thermal model validated by time-resolved temperature measurements." @default.
- W4225568503 created "2022-05-05" @default.
- W4225568503 creator A5042643943 @default.
- W4225568503 creator A5056151308 @default.
- W4225568503 creator A5080170336 @default.
- W4225568503 creator A5090807137 @default.
- W4225568503 date "2022-08-01" @default.
- W4225568503 modified "2023-09-27" @default.
- W4225568503 title "Thermal modeling and validation via time-resolved temperature measurements for nanosecond laser irradiation of a powder bed of micro metal particles" @default.
- W4225568503 cites W1160694073 @default.
- W4225568503 cites W1964048291 @default.
- W4225568503 cites W1995710419 @default.
- W4225568503 cites W2021505684 @default.
- W4225568503 cites W2024263558 @default.
- W4225568503 cites W2032749478 @default.
- W4225568503 cites W2034567503 @default.
- W4225568503 cites W2043301592 @default.
- W4225568503 cites W2044666460 @default.
- W4225568503 cites W2045526953 @default.
- W4225568503 cites W2051736565 @default.
- W4225568503 cites W2053121339 @default.
- W4225568503 cites W2054366377 @default.
- W4225568503 cites W2055454329 @default.
- W4225568503 cites W2055660443 @default.
- W4225568503 cites W2058394621 @default.
- W4225568503 cites W2063107675 @default.
- W4225568503 cites W2066470281 @default.
- W4225568503 cites W2081385002 @default.
- W4225568503 cites W2099540110 @default.
- W4225568503 cites W2138895310 @default.
- W4225568503 cites W2148238047 @default.
- W4225568503 cites W2150816213 @default.
- W4225568503 cites W2168891534 @default.
- W4225568503 cites W2250719600 @default.
- W4225568503 cites W2312356617 @default.
- W4225568503 cites W2313226247 @default.
- W4225568503 cites W2523927212 @default.
- W4225568503 cites W2529375380 @default.
- W4225568503 cites W2606024403 @default.
- W4225568503 cites W2744273983 @default.
- W4225568503 cites W2807884256 @default.
- W4225568503 cites W2900803639 @default.
- W4225568503 cites W2964319163 @default.
- W4225568503 cites W2981474778 @default.
- W4225568503 cites W3163940296 @default.
- W4225568503 cites W3189448590 @default.
- W4225568503 cites W4238429930 @default.
- W4225568503 doi "https://doi.org/10.1016/j.optlastec.2022.107981" @default.
- W4225568503 hasPublicationYear "2022" @default.
- W4225568503 type Work @default.
- W4225568503 citedByCount "1" @default.
- W4225568503 countsByYear W42255685032023 @default.
- W4225568503 crossrefType "journal-article" @default.
- W4225568503 hasAuthorship W4225568503A5042643943 @default.
- W4225568503 hasAuthorship W4225568503A5056151308 @default.
- W4225568503 hasAuthorship W4225568503A5080170336 @default.
- W4225568503 hasAuthorship W4225568503A5090807137 @default.
- W4225568503 hasBestOaLocation W42255685031 @default.
- W4225568503 hasConcept C111337013 @default.
- W4225568503 hasConcept C120665830 @default.
- W4225568503 hasConcept C121332964 @default.
- W4225568503 hasConcept C185544564 @default.
- W4225568503 hasConcept C191897082 @default.
- W4225568503 hasConcept C192562407 @default.
- W4225568503 hasConcept C204530211 @default.
- W4225568503 hasConcept C2779661778 @default.
- W4225568503 hasConcept C49040817 @default.
- W4225568503 hasConcept C51141536 @default.
- W4225568503 hasConcept C520434653 @default.
- W4225568503 hasConcept C544153396 @default.
- W4225568503 hasConcept C97355855 @default.
- W4225568503 hasConceptScore W4225568503C111337013 @default.
- W4225568503 hasConceptScore W4225568503C120665830 @default.
- W4225568503 hasConceptScore W4225568503C121332964 @default.
- W4225568503 hasConceptScore W4225568503C185544564 @default.
- W4225568503 hasConceptScore W4225568503C191897082 @default.
- W4225568503 hasConceptScore W4225568503C192562407 @default.
- W4225568503 hasConceptScore W4225568503C204530211 @default.
- W4225568503 hasConceptScore W4225568503C2779661778 @default.
- W4225568503 hasConceptScore W4225568503C49040817 @default.
- W4225568503 hasConceptScore W4225568503C51141536 @default.
- W4225568503 hasConceptScore W4225568503C520434653 @default.
- W4225568503 hasConceptScore W4225568503C544153396 @default.
- W4225568503 hasConceptScore W4225568503C97355855 @default.
- W4225568503 hasLocation W42255685031 @default.
- W4225568503 hasOpenAccess W4225568503 @default.
- W4225568503 hasPrimaryLocation W42255685031 @default.
- W4225568503 hasRelatedWork W1998335983 @default.
- W4225568503 hasRelatedWork W2023810441 @default.
- W4225568503 hasRelatedWork W2024695809 @default.
- W4225568503 hasRelatedWork W2058444100 @default.
- W4225568503 hasRelatedWork W2090797898 @default.
- W4225568503 hasRelatedWork W2169019757 @default.
- W4225568503 hasRelatedWork W2361393634 @default.
- W4225568503 hasRelatedWork W2376261108 @default.
- W4225568503 hasRelatedWork W3196587660 @default.
- W4225568503 hasRelatedWork W2094318888 @default.
- W4225568503 hasVolume "152" @default.