Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225572800> ?p ?o ?g. }
- W4225572800 endingPage "2757" @default.
- W4225572800 startingPage "2742" @default.
- W4225572800 abstract "In this paper, we study the memory event-triggering L2-L∞ state estimation for a type of continuous stochastic neural networks (NNs) subject to time-varying delays. The information of some recent released packets is made use in the proposed triggering conditions to schedule the data propagation, thereby reducing communication frequency and saving energy. By taking into account network-induced complexities (i.e. transmission delays and random disturbances), we first formulate the evolutions of estimation error in an augmented form, and then propose the conditions under with the design goals could be met. By using certain novel Lyapunov–Krasovskii (L–K) functionals in combination with stochastic analysis technique, sufficient conditions have been provided for the existence of desired estimator, guaranteeing both the globally asymptotically mean-square stability and the prescribed L2-L∞ performance simultaneously. Moreover, the estimator gains are obtained by virtue of certain convex optimisation algorithms. Finally, we use an illustrative example to verify the obtained theoretical algorithm." @default.
- W4225572800 created "2022-05-05" @default.
- W4225572800 creator A5001710969 @default.
- W4225572800 creator A5028543950 @default.
- W4225572800 creator A5060683274 @default.
- W4225572800 creator A5067275668 @default.
- W4225572800 date "2022-04-06" @default.
- W4225572800 modified "2023-10-05" @default.
- W4225572800 title "<i>L</i><sub>2</sub>-<i>L</i><sub>∞</sub> state estimation for continuous stochastic delayed neural networks via memory event-triggering strategy" @default.
- W4225572800 cites W2029274891 @default.
- W4225572800 cites W2038902225 @default.
- W4225572800 cites W2060278456 @default.
- W4225572800 cites W2071233233 @default.
- W4225572800 cites W2112264578 @default.
- W4225572800 cites W2138484437 @default.
- W4225572800 cites W2147945976 @default.
- W4225572800 cites W2192655208 @default.
- W4225572800 cites W2343217457 @default.
- W4225572800 cites W2345172184 @default.
- W4225572800 cites W2546109980 @default.
- W4225572800 cites W2548227567 @default.
- W4225572800 cites W2586578188 @default.
- W4225572800 cites W2588591728 @default.
- W4225572800 cites W2605988318 @default.
- W4225572800 cites W2747057594 @default.
- W4225572800 cites W2767615536 @default.
- W4225572800 cites W2769728167 @default.
- W4225572800 cites W2783384406 @default.
- W4225572800 cites W2790664211 @default.
- W4225572800 cites W2791807415 @default.
- W4225572800 cites W2794371463 @default.
- W4225572800 cites W2797295114 @default.
- W4225572800 cites W2885136026 @default.
- W4225572800 cites W2887541055 @default.
- W4225572800 cites W2896122684 @default.
- W4225572800 cites W2899294337 @default.
- W4225572800 cites W2899767133 @default.
- W4225572800 cites W2903204749 @default.
- W4225572800 cites W2904807980 @default.
- W4225572800 cites W2922520136 @default.
- W4225572800 cites W2953856231 @default.
- W4225572800 cites W2958975683 @default.
- W4225572800 cites W2966766277 @default.
- W4225572800 cites W2967307124 @default.
- W4225572800 cites W2968807246 @default.
- W4225572800 cites W2974731060 @default.
- W4225572800 cites W2984128301 @default.
- W4225572800 cites W2984987324 @default.
- W4225572800 cites W2985635527 @default.
- W4225572800 cites W3001028887 @default.
- W4225572800 cites W3009323257 @default.
- W4225572800 cites W3019114689 @default.
- W4225572800 cites W3020324824 @default.
- W4225572800 cites W3027251624 @default.
- W4225572800 cites W3046310786 @default.
- W4225572800 cites W3080710002 @default.
- W4225572800 cites W3118426503 @default.
- W4225572800 cites W3184110038 @default.
- W4225572800 cites W3194116415 @default.
- W4225572800 doi "https://doi.org/10.1080/00207721.2022.2055192" @default.
- W4225572800 hasPublicationYear "2022" @default.
- W4225572800 type Work @default.
- W4225572800 citedByCount "28" @default.
- W4225572800 countsByYear W42255728002022 @default.
- W4225572800 countsByYear W42255728002023 @default.
- W4225572800 crossrefType "journal-article" @default.
- W4225572800 hasAuthorship W4225572800A5001710969 @default.
- W4225572800 hasAuthorship W4225572800A5028543950 @default.
- W4225572800 hasAuthorship W4225572800A5060683274 @default.
- W4225572800 hasAuthorship W4225572800A5067275668 @default.
- W4225572800 hasConcept C105795698 @default.
- W4225572800 hasConcept C111919701 @default.
- W4225572800 hasConcept C112972136 @default.
- W4225572800 hasConcept C11413529 @default.
- W4225572800 hasConcept C119857082 @default.
- W4225572800 hasConcept C121332964 @default.
- W4225572800 hasConcept C126255220 @default.
- W4225572800 hasConcept C154945302 @default.
- W4225572800 hasConcept C158379750 @default.
- W4225572800 hasConcept C158622935 @default.
- W4225572800 hasConcept C185429906 @default.
- W4225572800 hasConcept C2775924081 @default.
- W4225572800 hasConcept C2779662365 @default.
- W4225572800 hasConcept C31258907 @default.
- W4225572800 hasConcept C33923547 @default.
- W4225572800 hasConcept C41008148 @default.
- W4225572800 hasConcept C47446073 @default.
- W4225572800 hasConcept C48103436 @default.
- W4225572800 hasConcept C50644808 @default.
- W4225572800 hasConcept C60640748 @default.
- W4225572800 hasConcept C62520636 @default.
- W4225572800 hasConcept C68387754 @default.
- W4225572800 hasConcept C761482 @default.
- W4225572800 hasConcept C76155785 @default.
- W4225572800 hasConceptScore W4225572800C105795698 @default.
- W4225572800 hasConceptScore W4225572800C111919701 @default.
- W4225572800 hasConceptScore W4225572800C112972136 @default.
- W4225572800 hasConceptScore W4225572800C11413529 @default.