Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225580325> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4225580325 endingPage "e4034" @default.
- W4225580325 startingPage "e4034" @default.
- W4225580325 abstract "Background: A sensitive, objective, and universally accepted method of measuring facial deformity does not currently exist. Two distinct machine learning methods are described here that produce numerical scores reflecting the level of deformity of a wide variety of facial conditions. Methods: The first proposed technique utilizes an object detector based on a cascade function of Haar features. The model was trained using a dataset of 200,000 normal faces, as well as a collection of images devoid of faces. With the model trained to detect normal faces, the face detector confidence score was shown to function as a reliable gauge of facial abnormality. The second technique developed is based on a deep learning architecture of a convolutional autoencoder trained with the same rich dataset of normal faces. Because the convolutional autoencoder regenerates images disposed toward their training dataset (ie, normal faces), we utilized its reconstruction error as an indicator of facial abnormality. Scores generated by both methods were compared with human ratings obtained using a survey of 80 subjects evaluating 60 images depicting a range of facial deformities [rating from 1 (abnormal) to 7 (normal)]. Results: The machine scores were highly correlated to the average human score, with overall Pearson’s correlation coefficient exceeding 0.96 ( P < 0.00001). Both methods were computationally efficient, reporting results within 3 seconds. Conclusions: These models show promise for adaptation into a clinically accessible handheld tool. It is anticipated that ongoing development of this technology will facilitate multicenter collaboration and comparison of outcomes between conditions, techniques, operators, and institutions." @default.
- W4225580325 created "2022-05-05" @default.
- W4225580325 creator A5021807596 @default.
- W4225580325 creator A5024145891 @default.
- W4225580325 creator A5034213361 @default.
- W4225580325 creator A5045420633 @default.
- W4225580325 creator A5051240125 @default.
- W4225580325 date "2022-01-01" @default.
- W4225580325 modified "2023-10-17" @default.
- W4225580325 title "Toward a Universal Measure of Facial Difference Using Two Novel Machine Learning Models" @default.
- W4225580325 cites W1972880464 @default.
- W4225580325 cites W1974185977 @default.
- W4225580325 cites W1989090467 @default.
- W4225580325 cites W1999320822 @default.
- W4225580325 cites W2009511112 @default.
- W4225580325 cites W2016608004 @default.
- W4225580325 cites W2037352553 @default.
- W4225580325 cites W2106450933 @default.
- W4225580325 cites W2525352145 @default.
- W4225580325 cites W2755330712 @default.
- W4225580325 cites W2776071000 @default.
- W4225580325 cites W2885279911 @default.
- W4225580325 cites W2904476003 @default.
- W4225580325 cites W2966049994 @default.
- W4225580325 cites W2980241031 @default.
- W4225580325 cites W3005335661 @default.
- W4225580325 cites W3006436762 @default.
- W4225580325 cites W3094364177 @default.
- W4225580325 cites W3099222358 @default.
- W4225580325 cites W3106883650 @default.
- W4225580325 cites W3112133190 @default.
- W4225580325 cites W3174801246 @default.
- W4225580325 cites W3176637879 @default.
- W4225580325 doi "https://doi.org/10.1097/gox.0000000000004034" @default.
- W4225580325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35070595" @default.
- W4225580325 hasPublicationYear "2022" @default.
- W4225580325 type Work @default.
- W4225580325 citedByCount "1" @default.
- W4225580325 countsByYear W42255803252023 @default.
- W4225580325 crossrefType "journal-article" @default.
- W4225580325 hasAuthorship W4225580325A5021807596 @default.
- W4225580325 hasAuthorship W4225580325A5024145891 @default.
- W4225580325 hasAuthorship W4225580325A5034213361 @default.
- W4225580325 hasAuthorship W4225580325A5045420633 @default.
- W4225580325 hasAuthorship W4225580325A5051240125 @default.
- W4225580325 hasBestOaLocation W42255803251 @default.
- W4225580325 hasConcept C101738243 @default.
- W4225580325 hasConcept C108583219 @default.
- W4225580325 hasConcept C119857082 @default.
- W4225580325 hasConcept C138885662 @default.
- W4225580325 hasConcept C144024400 @default.
- W4225580325 hasConcept C153180895 @default.
- W4225580325 hasConcept C154945302 @default.
- W4225580325 hasConcept C2776401178 @default.
- W4225580325 hasConcept C2779304628 @default.
- W4225580325 hasConcept C36289849 @default.
- W4225580325 hasConcept C41008148 @default.
- W4225580325 hasConcept C41895202 @default.
- W4225580325 hasConcept C81363708 @default.
- W4225580325 hasConceptScore W4225580325C101738243 @default.
- W4225580325 hasConceptScore W4225580325C108583219 @default.
- W4225580325 hasConceptScore W4225580325C119857082 @default.
- W4225580325 hasConceptScore W4225580325C138885662 @default.
- W4225580325 hasConceptScore W4225580325C144024400 @default.
- W4225580325 hasConceptScore W4225580325C153180895 @default.
- W4225580325 hasConceptScore W4225580325C154945302 @default.
- W4225580325 hasConceptScore W4225580325C2776401178 @default.
- W4225580325 hasConceptScore W4225580325C2779304628 @default.
- W4225580325 hasConceptScore W4225580325C36289849 @default.
- W4225580325 hasConceptScore W4225580325C41008148 @default.
- W4225580325 hasConceptScore W4225580325C41895202 @default.
- W4225580325 hasConceptScore W4225580325C81363708 @default.
- W4225580325 hasIssue "1" @default.
- W4225580325 hasLocation W42255803251 @default.
- W4225580325 hasLocation W42255803252 @default.
- W4225580325 hasLocation W42255803253 @default.
- W4225580325 hasLocation W42255803254 @default.
- W4225580325 hasLocation W42255803255 @default.
- W4225580325 hasOpenAccess W4225580325 @default.
- W4225580325 hasPrimaryLocation W42255803251 @default.
- W4225580325 hasRelatedWork W2669956259 @default.
- W4225580325 hasRelatedWork W2731899572 @default.
- W4225580325 hasRelatedWork W2897995864 @default.
- W4225580325 hasRelatedWork W3000866861 @default.
- W4225580325 hasRelatedWork W3116150086 @default.
- W4225580325 hasRelatedWork W3133861977 @default.
- W4225580325 hasRelatedWork W4200173597 @default.
- W4225580325 hasRelatedWork W4310034804 @default.
- W4225580325 hasRelatedWork W4312417841 @default.
- W4225580325 hasRelatedWork W4321369474 @default.
- W4225580325 hasVolume "10" @default.
- W4225580325 isParatext "false" @default.
- W4225580325 isRetracted "false" @default.
- W4225580325 workType "article" @default.