Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225586443> ?p ?o ?g. }
- W4225586443 endingPage "312" @default.
- W4225586443 startingPage "287" @default.
- W4225586443 abstract "Recent innovations in machine learning enjoy a remarkable rate of adoption across a broad spectrum of applications, including cyber-security. While previous chapters study the application of machine learning solutions to cyber-security, in this chapter we present adversarial machine learning: a field of study concerned with the security of machine learning algorithms when faced with attackers. Likewise, adversarial machine learning enjoys remarkable interest from the community, with a large body of works that either propose attacks against machine learning algorithms, or defenses against adversarial attacks. In particular, adversarial attacks have been mounted in almost all applications of machine learning. Here, we aim to systematize adversarial machine learning, with a pragmatic focus on common computer security applications. Without assuming a strong background in machine learning, we also introduce the basic building blocks and fundamental properties of adversarial machine learning. This study is therefore accessible both to a security audience without in-depth knowledge of machine learning and to a machine learning audience." @default.
- W4225586443 created "2022-05-05" @default.
- W4225586443 creator A5003959400 @default.
- W4225586443 creator A5027550247 @default.
- W4225586443 creator A5029075061 @default.
- W4225586443 creator A5046771199 @default.
- W4225586443 creator A5054031138 @default.
- W4225586443 date "2022-01-01" @default.
- W4225586443 modified "2023-10-16" @default.
- W4225586443 title "Adversarial Machine Learning" @default.
- W4225586443 cites W1608718905 @default.
- W4225586443 cites W1688746682 @default.
- W4225586443 cites W1914017572 @default.
- W4225586443 cites W1954853156 @default.
- W4225586443 cites W1971657180 @default.
- W4225586443 cites W1998506139 @default.
- W4225586443 cites W2007562169 @default.
- W4225586443 cites W2045782640 @default.
- W4225586443 cites W2059777280 @default.
- W4225586443 cites W2063894193 @default.
- W4225586443 cites W2065776696 @default.
- W4225586443 cites W2088301450 @default.
- W4225586443 cites W2114296159 @default.
- W4225586443 cites W2125561172 @default.
- W4225586443 cites W2125908420 @default.
- W4225586443 cites W2144409202 @default.
- W4225586443 cites W2144796873 @default.
- W4225586443 cites W2144906988 @default.
- W4225586443 cites W2151298633 @default.
- W4225586443 cites W2205169453 @default.
- W4225586443 cites W2293768274 @default.
- W4225586443 cites W2296452361 @default.
- W4225586443 cites W2380581874 @default.
- W4225586443 cites W2476429474 @default.
- W4225586443 cites W2528437680 @default.
- W4225586443 cites W2535873859 @default.
- W4225586443 cites W2557513839 @default.
- W4225586443 cites W2574797807 @default.
- W4225586443 cites W2604505099 @default.
- W4225586443 cites W2605289356 @default.
- W4225586443 cites W2693668331 @default.
- W4225586443 cites W2744095836 @default.
- W4225586443 cites W2746600820 @default.
- W4225586443 cites W2791319131 @default.
- W4225586443 cites W2798302089 @default.
- W4225586443 cites W2906208681 @default.
- W4225586443 cites W2908643158 @default.
- W4225586443 cites W2911377781 @default.
- W4225586443 cites W2914147668 @default.
- W4225586443 cites W2945744610 @default.
- W4225586443 cites W295993571 @default.
- W4225586443 cites W2962700793 @default.
- W4225586443 cites W2962711307 @default.
- W4225586443 cites W2962763344 @default.
- W4225586443 cites W2962853428 @default.
- W4225586443 cites W2962878175 @default.
- W4225586443 cites W2963058500 @default.
- W4225586443 cites W2963098487 @default.
- W4225586443 cites W2963165251 @default.
- W4225586443 cites W2963448658 @default.
- W4225586443 cites W2964061570 @default.
- W4225586443 cites W2964077693 @default.
- W4225586443 cites W2964159373 @default.
- W4225586443 cites W2985390828 @default.
- W4225586443 cites W3006084888 @default.
- W4225586443 cites W3007377324 @default.
- W4225586443 cites W3007913795 @default.
- W4225586443 cites W3013626038 @default.
- W4225586443 cites W3015625436 @default.
- W4225586443 cites W3016970897 @default.
- W4225586443 cites W3034412497 @default.
- W4225586443 cites W3091857398 @default.
- W4225586443 cites W3107185593 @default.
- W4225586443 cites W4247200422 @default.
- W4225586443 cites W4256161595 @default.
- W4225586443 cites W4300824008 @default.
- W4225586443 cites W4668225 @default.
- W4225586443 cites W9657784 @default.
- W4225586443 doi "https://doi.org/10.1007/978-3-030-98795-4_12" @default.
- W4225586443 hasPublicationYear "2022" @default.
- W4225586443 type Work @default.
- W4225586443 citedByCount "2" @default.
- W4225586443 countsByYear W42255864432022 @default.
- W4225586443 countsByYear W42255864432023 @default.
- W4225586443 crossrefType "book-chapter" @default.
- W4225586443 hasAuthorship W4225586443A5003959400 @default.
- W4225586443 hasAuthorship W4225586443A5027550247 @default.
- W4225586443 hasAuthorship W4225586443A5029075061 @default.
- W4225586443 hasAuthorship W4225586443A5046771199 @default.
- W4225586443 hasAuthorship W4225586443A5054031138 @default.
- W4225586443 hasConcept C115903097 @default.
- W4225586443 hasConcept C119857082 @default.
- W4225586443 hasConcept C120665830 @default.
- W4225586443 hasConcept C121332964 @default.
- W4225586443 hasConcept C154945302 @default.
- W4225586443 hasConcept C192209626 @default.
- W4225586443 hasConcept C202444582 @default.
- W4225586443 hasConcept C24138899 @default.