Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225592407> ?p ?o ?g. }
- W4225592407 abstract "This study aimed to evaluate the pathological concordance from combined systematic and MRI-targeted prostate biopsy to final pathology and to verify the effectiveness of a machine learning-based model with targeted biopsy (TB) features in predicting pathological upgrade.All patients in this study underwent prostate multiparametric MRI (mpMRI), transperineal systematic plus transperineal targeted prostate biopsy under local anesthesia, and robot-assisted laparoscopic radical prostatectomy (RARP) for prostate cancer (PCa) sequentially from October 2016 to February 2020 in two referral centers. For cores with cancer, grade group (GG) and Gleason score were determined by using the 2014 International Society of Urological Pathology (ISUP) guidelines. Four supervised machine learning methods were employed, including two base classifiers and two ensemble learning-based classifiers. In all classifiers, the training set was 395 of 565 (70%) patients, and the test set was the remaining 170 patients. The prediction performance of each model was evaluated by area under the receiver operating characteristic curve (AUC). The Gini index was used to evaluate the importance of all features and to figure out the most contributed features. A nomogram was established to visually predict the risk of upgrading. Predicted probability was a prevalence rate calculated by a proposed nomogram.A total of 515 patients were included in our cohort. The combined biopsy had a better concordance of postoperative histopathology than a systematic biopsy (SB) only (48.15% vs. 40.19%, p = 0.012). The combined biopsy could significantly reduce the upgrading rate of postoperative pathology, in comparison to SB only (23.30% vs. 39.61%, p < 0.0001) or TB only (23.30% vs. 40.19%, p < 0.0001). The most common pathological upgrade occurred in ISUP GG1 and GG2, accounting for 53.28% and 20.42%, respectively. All machine learning methods had satisfactory predictive efficacy. The overall accuracy was 0.703, 0.768, 0.794, and 0.761 for logistic regression, random forest, eXtreme Gradient Boosting, and support vector machine, respectively. TB-related features were among the most contributed features of a prediction model for upgrade prediction.The combined effect of SB plus TB led to a better pathological concordance rate and less upgrading from biopsy to RP. Machine learning models with features of TB to predict PCa GG upgrading have a satisfactory predictive efficacy." @default.
- W4225592407 created "2022-05-05" @default.
- W4225592407 creator A5002228713 @default.
- W4225592407 creator A5004267224 @default.
- W4225592407 creator A5006322525 @default.
- W4225592407 creator A5010433680 @default.
- W4225592407 creator A5011466391 @default.
- W4225592407 creator A5023899260 @default.
- W4225592407 creator A5024210212 @default.
- W4225592407 creator A5029058934 @default.
- W4225592407 creator A5030019301 @default.
- W4225592407 creator A5045473616 @default.
- W4225592407 creator A5053132919 @default.
- W4225592407 creator A5053447705 @default.
- W4225592407 creator A5054667985 @default.
- W4225592407 creator A5064430125 @default.
- W4225592407 creator A5067669304 @default.
- W4225592407 creator A5072273227 @default.
- W4225592407 date "2022-04-07" @default.
- W4225592407 modified "2023-10-13" @default.
- W4225592407 title "Machine Learning-Based Prediction of Pathological Upgrade From Combined Transperineal Systematic and MRI-Targeted Prostate Biopsy to Final Pathology: A Multicenter Retrospective Study" @default.
- W4225592407 cites W1494521255 @default.
- W4225592407 cites W1978761040 @default.
- W4225592407 cites W2020443470 @default.
- W4225592407 cites W2089500973 @default.
- W4225592407 cites W2090325072 @default.
- W4225592407 cites W2091415498 @default.
- W4225592407 cites W2110881680 @default.
- W4225592407 cites W2151591509 @default.
- W4225592407 cites W2340422569 @default.
- W4225592407 cites W2469746617 @default.
- W4225592407 cites W2492513888 @default.
- W4225592407 cites W2516801914 @default.
- W4225592407 cites W2554273221 @default.
- W4225592407 cites W2577453388 @default.
- W4225592407 cites W2585961278 @default.
- W4225592407 cites W2607621547 @default.
- W4225592407 cites W2632036556 @default.
- W4225592407 cites W2768484936 @default.
- W4225592407 cites W2773193665 @default.
- W4225592407 cites W2778455075 @default.
- W4225592407 cites W2793905111 @default.
- W4225592407 cites W2801462436 @default.
- W4225592407 cites W2895620602 @default.
- W4225592407 cites W2900548778 @default.
- W4225592407 cites W2901859788 @default.
- W4225592407 cites W2919115771 @default.
- W4225592407 cites W2940010972 @default.
- W4225592407 cites W2960979474 @default.
- W4225592407 cites W2972245785 @default.
- W4225592407 cites W2973334574 @default.
- W4225592407 cites W3010331388 @default.
- W4225592407 cites W3012687466 @default.
- W4225592407 cites W3016775681 @default.
- W4225592407 cites W3021689587 @default.
- W4225592407 cites W3023440220 @default.
- W4225592407 cites W3034034779 @default.
- W4225592407 cites W3039032823 @default.
- W4225592407 cites W3046740159 @default.
- W4225592407 cites W3080168197 @default.
- W4225592407 cites W3115415766 @default.
- W4225592407 cites W3163875825 @default.
- W4225592407 cites W3191573324 @default.
- W4225592407 doi "https://doi.org/10.3389/fonc.2022.785684" @default.
- W4225592407 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35463339" @default.
- W4225592407 hasPublicationYear "2022" @default.
- W4225592407 type Work @default.
- W4225592407 citedByCount "1" @default.
- W4225592407 countsByYear W42255924072023 @default.
- W4225592407 crossrefType "journal-article" @default.
- W4225592407 hasAuthorship W4225592407A5002228713 @default.
- W4225592407 hasAuthorship W4225592407A5004267224 @default.
- W4225592407 hasAuthorship W4225592407A5006322525 @default.
- W4225592407 hasAuthorship W4225592407A5010433680 @default.
- W4225592407 hasAuthorship W4225592407A5011466391 @default.
- W4225592407 hasAuthorship W4225592407A5023899260 @default.
- W4225592407 hasAuthorship W4225592407A5024210212 @default.
- W4225592407 hasAuthorship W4225592407A5029058934 @default.
- W4225592407 hasAuthorship W4225592407A5030019301 @default.
- W4225592407 hasAuthorship W4225592407A5045473616 @default.
- W4225592407 hasAuthorship W4225592407A5053132919 @default.
- W4225592407 hasAuthorship W4225592407A5053447705 @default.
- W4225592407 hasAuthorship W4225592407A5054667985 @default.
- W4225592407 hasAuthorship W4225592407A5064430125 @default.
- W4225592407 hasAuthorship W4225592407A5067669304 @default.
- W4225592407 hasAuthorship W4225592407A5072273227 @default.
- W4225592407 hasBestOaLocation W42255924071 @default.
- W4225592407 hasConcept C121608353 @default.
- W4225592407 hasConcept C126322002 @default.
- W4225592407 hasConcept C126838900 @default.
- W4225592407 hasConcept C141071460 @default.
- W4225592407 hasConcept C142724271 @default.
- W4225592407 hasConcept C143998085 @default.
- W4225592407 hasConcept C160798450 @default.
- W4225592407 hasConcept C167135981 @default.
- W4225592407 hasConcept C2775934546 @default.
- W4225592407 hasConcept C2776235491 @default.
- W4225592407 hasConcept C2779466945 @default.
- W4225592407 hasConcept C2780192828 @default.
- W4225592407 hasConcept C2781217009 @default.