Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225596711> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4225596711 abstract "Grasping objects intelligently is a challenging task even for humans and we spend a considerable amount of time during our childhood to learn how to grasp objects correctly. In the case of robots, we can not afford to spend that much time on making it to learn how to grasp objects effectively. Therefore, in the present research we propose an efficient learning architecture based on VQVAE so that robots can be taught with sufficient data corresponding to correct grasping. However, getting sufficient labelled data is extremely difficult in the robot grasping domain. To help solve this problem, a semi-supervised learning based model which has much more generalization capability even with limited labelled data set, has been investigated. Its performance shows 6% improvement when compared with existing state-of-the-art models including our earlier model. During experimentation, It has been observed that our proposed model, RGGCNN2, performs significantly better, both in grasping isolated objects as well as objects in a cluttered environment, compared to the existing approaches which do not use unlabelled data for generating grasping rectangles. To the best of our knowledge, developing an intelligent robot grasping model (based on semi-supervised learning) trained through representation learning and exploiting the high-quality learning ability of GGCNN2 architecture with the limited number of labelled dataset together with the learned latent embeddings, can be used as a de-facto training method which has been established and also validated in this paper through rigorous hardware experimentations using Baxter (Anukul) research robot." @default.
- W4225596711 created "2022-05-05" @default.
- W4225596711 creator A5041478291 @default.
- W4225596711 creator A5059369765 @default.
- W4225596711 creator A5078649145 @default.
- W4225596711 date "2021-11-06" @default.
- W4225596711 modified "2023-09-29" @default.
- W4225596711 title "Development of a robust cascaded architecture for intelligent robot grasping using limited labelled data" @default.
- W4225596711 hasPublicationYear "2021" @default.
- W4225596711 type Work @default.
- W4225596711 citedByCount "0" @default.
- W4225596711 crossrefType "posted-content" @default.
- W4225596711 hasAuthorship W4225596711A5041478291 @default.
- W4225596711 hasAuthorship W4225596711A5059369765 @default.
- W4225596711 hasAuthorship W4225596711A5078649145 @default.
- W4225596711 hasBestOaLocation W42255967111 @default.
- W4225596711 hasConcept C119857082 @default.
- W4225596711 hasConcept C127413603 @default.
- W4225596711 hasConcept C134306372 @default.
- W4225596711 hasConcept C154945302 @default.
- W4225596711 hasConcept C171268870 @default.
- W4225596711 hasConcept C177148314 @default.
- W4225596711 hasConcept C177264268 @default.
- W4225596711 hasConcept C17744445 @default.
- W4225596711 hasConcept C199360897 @default.
- W4225596711 hasConcept C199539241 @default.
- W4225596711 hasConcept C201995342 @default.
- W4225596711 hasConcept C2776145971 @default.
- W4225596711 hasConcept C2776359362 @default.
- W4225596711 hasConcept C2780451532 @default.
- W4225596711 hasConcept C33923547 @default.
- W4225596711 hasConcept C41008148 @default.
- W4225596711 hasConcept C90509273 @default.
- W4225596711 hasConcept C94625758 @default.
- W4225596711 hasConceptScore W4225596711C119857082 @default.
- W4225596711 hasConceptScore W4225596711C127413603 @default.
- W4225596711 hasConceptScore W4225596711C134306372 @default.
- W4225596711 hasConceptScore W4225596711C154945302 @default.
- W4225596711 hasConceptScore W4225596711C171268870 @default.
- W4225596711 hasConceptScore W4225596711C177148314 @default.
- W4225596711 hasConceptScore W4225596711C177264268 @default.
- W4225596711 hasConceptScore W4225596711C17744445 @default.
- W4225596711 hasConceptScore W4225596711C199360897 @default.
- W4225596711 hasConceptScore W4225596711C199539241 @default.
- W4225596711 hasConceptScore W4225596711C201995342 @default.
- W4225596711 hasConceptScore W4225596711C2776145971 @default.
- W4225596711 hasConceptScore W4225596711C2776359362 @default.
- W4225596711 hasConceptScore W4225596711C2780451532 @default.
- W4225596711 hasConceptScore W4225596711C33923547 @default.
- W4225596711 hasConceptScore W4225596711C41008148 @default.
- W4225596711 hasConceptScore W4225596711C90509273 @default.
- W4225596711 hasConceptScore W4225596711C94625758 @default.
- W4225596711 hasLocation W42255967111 @default.
- W4225596711 hasOpenAccess W4225596711 @default.
- W4225596711 hasPrimaryLocation W42255967111 @default.
- W4225596711 hasRelatedWork W1195902 @default.
- W4225596711 hasRelatedWork W1243554 @default.
- W4225596711 hasRelatedWork W1383942 @default.
- W4225596711 hasRelatedWork W251746 @default.
- W4225596711 hasRelatedWork W317670 @default.
- W4225596711 hasRelatedWork W354571 @default.
- W4225596711 hasRelatedWork W4686358 @default.
- W4225596711 hasRelatedWork W603151 @default.
- W4225596711 hasRelatedWork W7430954 @default.
- W4225596711 hasRelatedWork W868042 @default.
- W4225596711 isParatext "false" @default.
- W4225596711 isRetracted "false" @default.
- W4225596711 workType "article" @default.